Package 'tfdatasets'

Title: Interface to 'TensorFlow' Datasets
Description: Interface to 'TensorFlow' Datasets, a high-level library for building complex input pipelines from simple, re-usable pieces. See <https://www.tensorflow.org/guide> for additional details.
Authors: Tomasz Kalinowski [ctb, cph, cre], Daniel Falbel [ctb, cph], JJ Allaire [aut, cph], Yuan Tang [aut] , Kevin Ushey [aut], RStudio [cph, fnd], Google Inc. [cph]
Maintainer: Tomasz Kalinowski <[email protected]>
License: Apache License 2.0
Version: 2.17.0.9000
Built: 2024-11-14 04:45:30 UTC
Source: https://github.com/rstudio/tfdatasets

Help Index


Find all nominal variables.

Description

Currently we only consider "string" type as nominal.

Usage

all_nominal()

See Also

Other Selectors: all_numeric(), has_type()


Speciy all numeric variables.

Description

Find all the variables with the following types: "float16", "float32", "float64", "int16", "int32", "int64", "half", "double".

Usage

all_numeric()

See Also

Other Selectors: all_nominal(), has_type()


Convert tf_dataset to an iterator that yields R arrays.

Description

Convert tf_dataset to an iterator that yields R arrays.

Usage

as_array_iterator(dataset)

Arguments

dataset

A tensorflow dataset

Value

An iterable. Use iterate() or iter_next() to access values from the iterator.


Get the single element of the dataset.

Description

The function enables you to use a TF Dataset in a stateless "tensor-in tensor-out" expression, without creating an iterator. This facilitates the ease of data transformation on tensors using the optimized TF Dataset abstraction on top of them.

Usage

## S3 method for class 'tensorflow.python.data.ops.dataset_ops.DatasetV2'
as_tensor(x, ..., name = NULL)

## S3 method for class 'tensorflow.python.data.ops.dataset_ops.DatasetV2'
as.array(x, ...)

Arguments

x

A TF Dataset

...

passed on to tensorflow::as_tensor()

name

(Optional.) A name for the TensorFlow operation.

Details

For example, consider a preprocess_batch() which would take as an input a batch of raw features and returns the processed feature.

preprocess_one_case <- function(x) x + 100

preprocess_batch   <- function(raw_features) {
  batch_size <- dim(raw_features)[1]
  ds <- raw_features %>%
    tensor_slices_dataset() %>%
    dataset_map(preprocess_one_case, num_parallel_calls = batch_size) %>%
    dataset_batch(batch_size)
  as_tensor(ds)
}

raw_features <- array(seq(prod(4, 5)), c(4, 5))
preprocess_batch(raw_features)

In the above example, the batch of raw_features was converted to a TF Dataset. Next, each of the raw_feature cases in the batch was mapped using the preprocess_one_case and the processed features were grouped into a single batch. The final dataset contains only one element which is a batch of all the processed features.

Note: The dataset should contain only one element. Now, instead of creating an iterator for the dataset and retrieving the batch of features, the as_tensor() function is used to skip the iterator creation process and directly output the batch of features.

This can be particularly useful when your tensor transformations are expressed as TF Dataset operations, and you want to use those transformations while serving your model.

See Also


Creates a dataset that deterministically chooses elements from datasets.

Description

Creates a dataset that deterministically chooses elements from datasets.

Usage

choose_from_datasets(datasets, choice_dataset, stop_on_empty_dataset = TRUE)

Arguments

datasets

A non-empty list of tf.data.Dataset objects with compatible structure.

choice_dataset

A tf.data.Dataset of scalar tf.int64 tensors between 0 and length(datasets) - 1.

stop_on_empty_dataset

If TRUE, selection stops if it encounters an empty dataset. If FALSE, it skips empty datasets. It is recommended to set it to TRUE. Otherwise, the selected elements start off as the user intends, but may change as input datasets become empty. This can be difficult to detect since the dataset starts off looking correct. Defaults to TRUE.

Value

Returns a dataset that interleaves elements from datasets according to the values of choice_dataset.

Examples

## Not run: 
datasets <- list(tensors_dataset("foo") %>% dataset_repeat(),
                 tensors_dataset("bar") %>% dataset_repeat(),
                 tensors_dataset("baz") %>% dataset_repeat())

# Define a dataset containing `[0, 1, 2, 0, 1, 2, 0, 1, 2]`.
choice_dataset <- range_dataset(0, 3) %>% dataset_repeat(3)
result <- choose_from_datasets(datasets, choice_dataset)
result %>% as_array_iterator() %>% iterate(function(s) s$decode()) %>% print()
# [1] "foo" "bar" "baz" "foo" "bar" "baz" "foo" "bar" "baz"

## End(Not run)

Combines consecutive elements of this dataset into batches.

Description

The components of the resulting element will have an additional outer dimension, which will be batch_size (or N %% batch_size for the last element if batch_size does not divide the number of input elements N evenly and drop_remainder is FALSE). If your program depends on the batches having the same outer dimension, you should set the drop_remainder argument to TRUE to prevent the smaller batch from being produced.

Usage

dataset_batch(
  dataset,
  batch_size,
  drop_remainder = FALSE,
  num_parallel_calls = NULL,
  deterministic = NULL
)

Arguments

dataset

A dataset

batch_size

An integer, representing the number of consecutive elements of this dataset to combine in a single batch.

drop_remainder

(Optional.) A boolean, representing whether the last batch should be dropped in the case it has fewer than batch_size elements; the default behavior is not to drop the smaller batch.

num_parallel_calls

(Optional.) A scalar integer, representing the number of batches to compute asynchronously in parallel. If not specified, batches will be computed sequentially. If the value tf$data$AUTOTUNE is used, then the number of parallel calls is set dynamically based on available resources.

deterministic

(Optional.) When num_parallel_calls is specified, if this boolean is specified (TRUE or FALSE), it controls the order in which the transformation produces elements. If set to FALSE, the transformation is allowed to yield elements out of order to trade determinism for performance. If not specified, the tf.data.Options.experimental_deterministic option (TRUE by default) controls the behavior. See dataset_options() for how to set dataset options.

Value

A dataset

Note

If your program requires data to have a statically known shape (e.g., when using XLA), you should use drop_remainder=TRUE. Without drop_remainder=TRUE the shape of the output dataset will have an unknown leading dimension due to the possibility of a smaller final batch.

See Also

Other dataset methods: dataset_cache(), dataset_collect(), dataset_concatenate(), dataset_decode_delim(), dataset_filter(), dataset_interleave(), dataset_map(), dataset_map_and_batch(), dataset_padded_batch(), dataset_prefetch(), dataset_prefetch_to_device(), dataset_reduce(), dataset_repeat(), dataset_shuffle(), dataset_shuffle_and_repeat(), dataset_skip(), dataset_take(), dataset_take_while(), dataset_window()


A transformation that buckets elements in a Dataset by length

Description

A transformation that buckets elements in a Dataset by length

Usage

dataset_bucket_by_sequence_length(
  dataset,
  element_length_func,
  bucket_boundaries,
  bucket_batch_sizes,
  padded_shapes = NULL,
  padding_values = NULL,
  pad_to_bucket_boundary = FALSE,
  no_padding = FALSE,
  drop_remainder = FALSE,
  name = NULL
)

Arguments

dataset

A tf_dataset

element_length_func

function from element in Dataset to tf$int32, determines the length of the element, which will determine the bucket it goes into.

bucket_boundaries

integers, upper length boundaries of the buckets.

bucket_batch_sizes

integers, batch size per bucket. Length should be length(bucket_boundaries) + 1.

padded_shapes

Nested structure of tf.TensorShape (returned by tensorflow::shape()) to pass to tf.data.Dataset.padded_batch. If not provided, will use dataset.output_shapes, which will result in variable length dimensions being padded out to the maximum length in each batch.

padding_values

Values to pad with, passed to tf.data.Dataset.padded_batch. Defaults to padding with 0.

pad_to_bucket_boundary

bool, if FALSE, will pad dimensions with unknown size to maximum length in batch. If TRUE, will pad dimensions with unknown size to bucket boundary minus 1 (i.e., the maximum length in each bucket), and caller must ensure that the source Dataset does not contain any elements with length longer than max(bucket_boundaries).

no_padding

boolean, indicates whether to pad the batch features (features need to be either of type tf.sparse.SparseTensor or of same shape).

drop_remainder

(Optional.) A logical scalar, representing whether the last batch should be dropped in the case it has fewer than batch_size elements; the default behavior is not to drop the smaller batch.

name

(Optional.) A name for the tf.data operation.

Details

Elements of the Dataset are grouped together by length and then are padded and batched.

This is useful for sequence tasks in which the elements have variable length. Grouping together elements that have similar lengths reduces the total fraction of padding in a batch which increases training step efficiency.

Below is an example to bucketize the input data to the 3 buckets "[0, 3), [3, 5), [5, Inf)" based on sequence length, with batch size 2.

See Also

Examples

## Not run: 
dataset <- list(c(0),
                c(1, 2, 3, 4),
                c(5, 6, 7),
                c(7, 8, 9, 10, 11),
                c(13, 14, 15, 16, 17, 18, 19, 20),
                c(21, 22)) %>%
  lapply(as.array) %>% lapply(as_tensor, "int32") %>%
  lapply(tensors_dataset) %>%
  Reduce(dataset_concatenate, .)

dataset %>%
  dataset_bucket_by_sequence_length(
    element_length_func = function(elem) tf$shape(elem)[1],
    bucket_boundaries = c(3, 5),
    bucket_batch_sizes = c(2, 2, 2)
  ) %>%
  as_array_iterator() %>%
  iterate(print)
#      [,1] [,2] [,3] [,4]
# [1,]    1    2    3    4
# [2,]    5    6    7    0
#      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]
# [1,]    7    8    9   10   11    0    0    0
# [2,]   13   14   15   16   17   18   19   20
#      [,1] [,2]
# [1,]    0    0
# [2,]   21   22

## End(Not run)

Caches the elements in this dataset.

Description

Caches the elements in this dataset.

Usage

dataset_cache(dataset, filename = NULL)

Arguments

dataset

A dataset

filename

String with the name of a directory on the filesystem to use for caching tensors in this Dataset. If a filename is not provided, the dataset will be cached in memory.

Value

A dataset

See Also

Other dataset methods: dataset_batch(), dataset_collect(), dataset_concatenate(), dataset_decode_delim(), dataset_filter(), dataset_interleave(), dataset_map(), dataset_map_and_batch(), dataset_padded_batch(), dataset_prefetch(), dataset_prefetch_to_device(), dataset_reduce(), dataset_repeat(), dataset_shuffle(), dataset_shuffle_and_repeat(), dataset_skip(), dataset_take(), dataset_take_while(), dataset_window()


Collects a dataset

Description

Iterates throught the dataset collecting every element into a list. It's useful for looking at the full result of the dataset. Note: You may run out of memory if your dataset is too big.

Usage

dataset_collect(dataset, iter_max = Inf)

Arguments

dataset

A dataset

iter_max

Maximum number of iterations. Inf until the end of the dataset

See Also

Other dataset methods: dataset_batch(), dataset_cache(), dataset_concatenate(), dataset_decode_delim(), dataset_filter(), dataset_interleave(), dataset_map(), dataset_map_and_batch(), dataset_padded_batch(), dataset_prefetch(), dataset_prefetch_to_device(), dataset_reduce(), dataset_repeat(), dataset_shuffle(), dataset_shuffle_and_repeat(), dataset_skip(), dataset_take(), dataset_take_while(), dataset_window()


Creates a dataset by concatenating given dataset with this dataset.

Description

Creates a dataset by concatenating given dataset with this dataset.

Usage

dataset_concatenate(dataset, ...)

Arguments

dataset, ...

tf_datasets to be concatenated

Value

A dataset

Note

Input dataset and dataset to be concatenated should have same nested structures and output types.

See Also

Other dataset methods: dataset_batch(), dataset_cache(), dataset_collect(), dataset_decode_delim(), dataset_filter(), dataset_interleave(), dataset_map(), dataset_map_and_batch(), dataset_padded_batch(), dataset_prefetch(), dataset_prefetch_to_device(), dataset_reduce(), dataset_repeat(), dataset_shuffle(), dataset_shuffle_and_repeat(), dataset_skip(), dataset_take(), dataset_take_while(), dataset_window()


Transform a dataset with delimted text lines into a dataset with named columns

Description

Transform a dataset with delimted text lines into a dataset with named columns

Usage

dataset_decode_delim(dataset, record_spec, parallel_records = NULL)

Arguments

dataset

Dataset containing delimited text lines (e.g. a CSV)

record_spec

Specification of column names and types (see delim_record_spec()).

parallel_records

(Optional) An integer, representing the number of records to decode in parallel. If not specified, records will be processed sequentially.

See Also

Other dataset methods: dataset_batch(), dataset_cache(), dataset_collect(), dataset_concatenate(), dataset_filter(), dataset_interleave(), dataset_map(), dataset_map_and_batch(), dataset_padded_batch(), dataset_prefetch(), dataset_prefetch_to_device(), dataset_reduce(), dataset_repeat(), dataset_shuffle(), dataset_shuffle_and_repeat(), dataset_skip(), dataset_take(), dataset_take_while(), dataset_window()


Enumerates the elements of this dataset

Description

Enumerates the elements of this dataset

Usage

dataset_enumerate(dataset, start = 0L)

Arguments

dataset

A tensorflow dataset

start

An integer (coerced to a tf$int64 scalar tf.Tensor), representing the start value for enumeration.

Details

It is similar to python's enumerate, this transforms a sequence of elements into a sequence of list(index, element), where index is an integer that indicates the position of the element in the sequence.

Examples

## Not run: 
dataset <- tensor_slices_dataset(100:103) %>%
  dataset_enumerate()

iterator <- reticulate::as_iterator(dataset)
reticulate::iter_next(iterator) # list(0, 100)
reticulate::iter_next(iterator) # list(1, 101)
reticulate::iter_next(iterator) # list(2, 102)
reticulate::iter_next(iterator) # list(3, 103)
reticulate::iter_next(iterator) # NULL (iterator exhausted)
reticulate::iter_next(iterator) # NULL (iterator exhausted)

## End(Not run)

Filter a dataset by a predicate

Description

Filter a dataset by a predicate

Usage

dataset_filter(dataset, predicate)

Arguments

dataset

A dataset

predicate

A function mapping a nested structure of tensors (having shapes and types defined by output_shapes() and output_types() to a scalar tf$bool tensor.

Details

Note that the functions used inside the predicate must be tensor operations (e.g. tf$not_equal, tf$less, etc.). R generic methods for relational operators (e.g. <, >, <=, etc.) and logical operators (e.g. !, &, |, etc.) are provided so you can use shorthand syntax for most common comparisions (this is illustrated by the example below).

Value

A dataset composed of records that matched the predicate.

See Also

Other dataset methods: dataset_batch(), dataset_cache(), dataset_collect(), dataset_concatenate(), dataset_decode_delim(), dataset_interleave(), dataset_map(), dataset_map_and_batch(), dataset_padded_batch(), dataset_prefetch(), dataset_prefetch_to_device(), dataset_reduce(), dataset_repeat(), dataset_shuffle(), dataset_shuffle_and_repeat(), dataset_skip(), dataset_take(), dataset_take_while(), dataset_window()

Examples

## Not run: 

dataset <- text_line_dataset("mtcars.csv", record_spec = mtcars_spec) %>%
  dataset_filter(function(record) {
    record$mpg >= 20
})

dataset <- text_line_dataset("mtcars.csv", record_spec = mtcars_spec) %>%
  dataset_filter(function(record) {
    record$mpg >= 20 & record$cyl >= 6L
  })


## End(Not run)

Maps map_func across this dataset and flattens the result.

Description

Maps map_func across this dataset and flattens the result.

Usage

dataset_flat_map(dataset, map_func)

Arguments

dataset

A dataset

map_func

A function mapping a nested structure of tensors (having shapes and types defined by output_shapes() and output_types() to a dataset.

Value

A dataset


Group windows of elements by key and reduce them

Description

Group windows of elements by key and reduce them

Usage

dataset_group_by_window(
  dataset,
  key_func,
  reduce_func,
  window_size = NULL,
  window_size_func = NULL,
  name = NULL
)

Arguments

dataset

a TF Dataset

key_func

A function mapping a nested structure of tensors (having shapes and types defined by self$output_shapes and self$output_types) to a scalar tf.int64 tensor.

reduce_func

A function mapping a key and a dataset of up to window_size consecutive elements matching that key to another dataset.

window_size

A tf.int64 scalar tf.Tensor, representing the number of consecutive elements matching the same key to combine in a single batch, which will be passed to reduce_func. Mutually exclusive with window_size_func.

window_size_func

A function mapping a key to a tf.int64 scalar tf.Tensor, representing the number of consecutive elements matching the same key to combine in a single batch, which will be passed to reduce_func. Mutually exclusive with window_size.

name

(Optional.) A name for the Tensorflow operation.

Details

This transformation maps each consecutive element in a dataset to a key using key_func() and groups the elements by key. It then applies reduce_func() to at most window_size_func(key) elements matching the same key. All except the final window for each key will contain window_size_func(key) elements; the final window may be smaller.

You may provide either a constant window_size or a window size determined by the key through window_size_func.

window_size <-  5
dataset <- range_dataset(to = 10) %>%
  dataset_group_by_window(
    key_func = function(x) x %% 2,
    reduce_func = function(key, ds) dataset_batch(ds, window_size),
    window_size = window_size
  )

it <- as_array_iterator(dataset)
while (!is.null(elem <- iter_next(it)))
  print(elem)
#> tf.Tensor([0 2 4 6 8], shape=(5), dtype=int64)
#> tf.Tensor([1 3 5 7 9], shape=(5), dtype=int64)

See Also


Maps map_func across this dataset, and interleaves the results

Description

Maps map_func across this dataset, and interleaves the results

Usage

dataset_interleave(dataset, map_func, cycle_length, block_length = 1)

Arguments

dataset

A dataset

map_func

A function mapping a nested structure of tensors (having shapes and types defined by output_shapes() and output_types() to a dataset.

cycle_length

The number of elements from this dataset that will be processed concurrently.

block_length

The number of consecutive elements to produce from each input element before cycling to another input element.

Details

The cycle_length and block_length arguments control the order in which elements are produced. cycle_length controls the number of input elements that are processed concurrently. In general, this transformation will apply map_func to cycle_length input elements, open iterators on the returned dataset objects, and cycle through them producing block_length consecutive elements from each iterator, and consuming the next input element each time it reaches the end of an iterator.

See Also

Other dataset methods: dataset_batch(), dataset_cache(), dataset_collect(), dataset_concatenate(), dataset_decode_delim(), dataset_filter(), dataset_map(), dataset_map_and_batch(), dataset_padded_batch(), dataset_prefetch(), dataset_prefetch_to_device(), dataset_reduce(), dataset_repeat(), dataset_shuffle(), dataset_shuffle_and_repeat(), dataset_skip(), dataset_take(), dataset_take_while(), dataset_window()

Examples

## Not run: 

dataset <- tensor_slices_dataset(c(1,2,3,4,5)) %>%
 dataset_interleave(cycle_length = 2, block_length = 4, function(x) {
   tensors_dataset(x) %>%
     dataset_repeat(6)
 })

# resulting dataset (newlines indicate "block" boundaries):
c(1, 1, 1, 1,
  2, 2, 2, 2,
  1, 1,
  2, 2,
  3, 3, 3, 3,
  4, 4, 4, 4,
  3, 3,
  4, 4,
  5, 5, 5, 5,
  5, 5,
)


## End(Not run)

Map a function across a dataset.

Description

Map a function across a dataset.

Usage

dataset_map(dataset, map_func, num_parallel_calls = NULL)

Arguments

dataset

A dataset

map_func

A function mapping a nested structure of tensors (having shapes and types defined by output_shapes() and output_types() to another nested structure of tensors. It also supports purrr style lambda functions powered by rlang::as_function().

num_parallel_calls

(Optional) An integer, representing the number of elements to process in parallel If not specified, elements will be processed sequentially.

Value

A dataset

See Also

Other dataset methods: dataset_batch(), dataset_cache(), dataset_collect(), dataset_concatenate(), dataset_decode_delim(), dataset_filter(), dataset_interleave(), dataset_map_and_batch(), dataset_padded_batch(), dataset_prefetch(), dataset_prefetch_to_device(), dataset_reduce(), dataset_repeat(), dataset_shuffle(), dataset_shuffle_and_repeat(), dataset_skip(), dataset_take(), dataset_take_while(), dataset_window()


Fused implementation of dataset_map() and dataset_batch()

Description

Maps 'map_func“ across batch_size consecutive elements of this dataset and then combines them into a batch. Functionally, it is equivalent to map followed by batch. However, by fusing the two transformations together, the implementation can be more efficient.

Usage

dataset_map_and_batch(
  dataset,
  map_func,
  batch_size,
  num_parallel_batches = NULL,
  drop_remainder = FALSE,
  num_parallel_calls = NULL
)

Arguments

dataset

A dataset

map_func

A function mapping a nested structure of tensors (having shapes and types defined by output_shapes() and output_types() to another nested structure of tensors. It also supports purrr style lambda functions powered by rlang::as_function().

batch_size

An integer, representing the number of consecutive elements of this dataset to combine in a single batch.

num_parallel_batches

(Optional) An integer, representing the number of batches to create in parallel. On one hand, higher values can help mitigate the effect of stragglers. On the other hand, higher values can increase contention if CPU is scarce.

drop_remainder

(Optional.) A boolean, representing whether the last batch should be dropped in the case it has fewer than batch_size elements; the default behavior is not to drop the smaller batch.

num_parallel_calls

(Optional) An integer, representing the number of elements to process in parallel If not specified, elements will be processed sequentially.

See Also

Other dataset methods: dataset_batch(), dataset_cache(), dataset_collect(), dataset_concatenate(), dataset_decode_delim(), dataset_filter(), dataset_interleave(), dataset_map(), dataset_padded_batch(), dataset_prefetch(), dataset_prefetch_to_device(), dataset_reduce(), dataset_repeat(), dataset_shuffle(), dataset_shuffle_and_repeat(), dataset_skip(), dataset_take(), dataset_take_while(), dataset_window()


Get or Set Dataset Options

Description

Get or Set Dataset Options

Usage

dataset_options(dataset, ...)

Arguments

dataset

a tensorflow dataset

...

Valid values include:

  • A set of named arguments setting options. Names of nested attributes can be separated with a "." (see examples). The set of named arguments can be supplied individually to ..., or as a single named list.

  • a tf$data$Options() instance.

Details

The options are "global" in the sense they apply to the entire dataset. If options are set multiple times, they are merged as long as different options do not use different non-default values.

Value

If values are supplied to ..., returns a tf.data.Dataset with the given options set/updated. Otherwise, returns the currently set options for the dataset.

Examples

## Not run: 
# pass options directly:
range_dataset(0, 10) %>%
  dataset_options(
    experimental_deterministic = FALSE,
    threading.private_threadpool_size = 10
  )

# pass options as a named list:
opts <- list(
  experimental_deterministic = FALSE,
  threading.private_threadpool_size = 10
)
range_dataset(0, 10) %>%
  dataset_options(opts)

# pass a tf.data.Options() instance
opts <- tf$data$Options()
opts$experimental_deterministic <- FALSE
opts$threading$private_threadpool_size <- 10L
range_dataset(0, 10) %>%
  dataset_options(opts)

# get currently set options
range_dataset(0, 10) %>% dataset_options()

## End(Not run)

Combines consecutive elements of this dataset into padded batches.

Description

Combines consecutive elements of this dataset into padded batches.

Usage

dataset_padded_batch(
  dataset,
  batch_size,
  padded_shapes = NULL,
  padding_values = NULL,
  drop_remainder = FALSE,
  name = NULL
)

Arguments

dataset

A dataset

batch_size

An integer, representing the number of consecutive elements of this dataset to combine in a single batch.

padded_shapes

(Optional.) A (nested) structure of tf.TensorShape (returned by tensorflow::shape()) or tf$int64 vector tensor-like objects representing the shape to which the respective component of each input element should be padded prior to batching. Any unknown dimensions will be padded to the maximum size of that dimension in each batch. If unset, all dimensions of all components are padded to the maximum size in the batch. padded_shapes must be set if any component has an unknown rank.

padding_values

(Optional.) A (nested) structure of scalar-shaped tf.Tensor, representing the padding values to use for the respective components. NULL represents that the (nested) structure should be padded with default values. Defaults are 0 for numeric types and the empty string "" for string types. The padding_values should have the same (nested) structure as the input dataset. If padding_values is a single element and the input dataset has multiple components, then the same padding_values will be used to pad every component of the dataset. If padding_values is a scalar, then its value will be broadcasted to match the shape of each component.

drop_remainder

(Optional.) A boolean scalar, representing whether the last batch should be dropped in the case it has fewer than batch_size elements; the default behavior is not to drop the smaller batch.

name

(Optional.) A name for the tf.data operation. Requires tensorflow version >= 2.7.

Details

This transformation combines multiple consecutive elements of the input dataset into a single element.

Like dataset_batch(), the components of the resulting element will have an additional outer dimension, which will be batch_size (or N %% batch_size for the last element if batch_size does not divide the number of input elements N evenly and drop_remainder is FALSE). If your program depends on the batches having the same outer dimension, you should set the drop_remainder argument to TRUE to prevent the smaller batch from being produced.

Unlike dataset_batch(), the input elements to be batched may have different shapes, and this transformation will pad each component to the respective shape in padded_shapes. The padded_shapes argument determines the resulting shape for each dimension of each component in an output element:

  • If the dimension is a constant, the component will be padded out to that length in that dimension.

  • If the dimension is unknown, the component will be padded out to the maximum length of all elements in that dimension.

See also tf$data$experimental$dense_to_sparse_batch, which combines elements that may have different shapes into a tf$sparse$SparseTensor.

Value

A tf_dataset

See Also

Other dataset methods: dataset_batch(), dataset_cache(), dataset_collect(), dataset_concatenate(), dataset_decode_delim(), dataset_filter(), dataset_interleave(), dataset_map(), dataset_map_and_batch(), dataset_prefetch(), dataset_prefetch_to_device(), dataset_reduce(), dataset_repeat(), dataset_shuffle(), dataset_shuffle_and_repeat(), dataset_skip(), dataset_take(), dataset_take_while(), dataset_window()

Examples

## Not run: 
A <- range_dataset(1, 5, dtype = tf$int32) %>%
  dataset_map(function(x) tf$fill(list(x), x))

# Pad to the smallest per-batch size that fits all elements.
B <- A %>% dataset_padded_batch(2)
B %>% as_array_iterator() %>% iterate(print)

# Pad to a fixed size.
C <- A %>% dataset_padded_batch(2, padded_shapes=5)
C %>% as_array_iterator() %>% iterate(print)

# Pad with a custom value.
D <- A %>% dataset_padded_batch(2, padded_shapes=5, padding_values = -1L)
D %>% as_array_iterator() %>% iterate(print)

# Pad with a single value and multiple components.
E <- zip_datasets(A, A) %>%  dataset_padded_batch(2, padding_values = -1L)
E %>% as_array_iterator() %>% iterate(print)

## End(Not run)

Creates a Dataset that prefetches elements from this dataset.

Description

Creates a Dataset that prefetches elements from this dataset.

Usage

dataset_prefetch(dataset, buffer_size = tf$data$AUTOTUNE)

Arguments

dataset

A dataset

buffer_size

An integer, representing the maximum number elements that will be buffered when prefetching.

Value

A dataset

See Also

Other dataset methods: dataset_batch(), dataset_cache(), dataset_collect(), dataset_concatenate(), dataset_decode_delim(), dataset_filter(), dataset_interleave(), dataset_map(), dataset_map_and_batch(), dataset_padded_batch(), dataset_prefetch_to_device(), dataset_reduce(), dataset_repeat(), dataset_shuffle(), dataset_shuffle_and_repeat(), dataset_skip(), dataset_take(), dataset_take_while(), dataset_window()


A transformation that prefetches dataset values to the given device

Description

A transformation that prefetches dataset values to the given device

Usage

dataset_prefetch_to_device(dataset, device, buffer_size = NULL)

Arguments

dataset

A dataset

device

A string. The name of a device to which elements will be prefetched (e.g. "/gpu:0").

buffer_size

(Optional.) The number of elements to buffer on device. Defaults to an automatically chosen value.

Value

A dataset

Note

Although the transformation creates a dataset, the transformation must be the final dataset in the input pipeline.

See Also

Other dataset methods: dataset_batch(), dataset_cache(), dataset_collect(), dataset_concatenate(), dataset_decode_delim(), dataset_filter(), dataset_interleave(), dataset_map(), dataset_map_and_batch(), dataset_padded_batch(), dataset_prefetch(), dataset_reduce(), dataset_repeat(), dataset_shuffle(), dataset_shuffle_and_repeat(), dataset_skip(), dataset_take(), dataset_take_while(), dataset_window()


Prepare a dataset for analysis

Description

Transform a dataset with named columns into a list with features (x) and response (y) elements.

Usage

dataset_prepare(
  dataset,
  x,
  y = NULL,
  named = TRUE,
  named_features = FALSE,
  parallel_records = NULL,
  batch_size = NULL,
  num_parallel_batches = NULL,
  drop_remainder = FALSE
)

Arguments

dataset

A dataset

x

Features to include. When named_features is FALSE all features will be stacked into a single tensor so must have an identical data type.

y

(Optional). Response variable.

named

TRUE to name the dataset elements "x" and "y", FALSE to not name the dataset elements.

named_features

TRUE to yield features as a named list; FALSE to stack features into a single array. Note that in the case of FALSE (the default) all features will be stacked into a single 2D tensor so need to have the same underlying data type.

parallel_records

(Optional) An integer, representing the number of records to decode in parallel. If not specified, records will be processed sequentially.

batch_size

(Optional). Batch size if you would like to fuse the dataset_prepare() operation together with a dataset_batch() (fusing generally improves overall training performance).

num_parallel_batches

(Optional) An integer, representing the number of batches to create in parallel. On one hand, higher values can help mitigate the effect of stragglers. On the other hand, higher values can increase contention if CPU is scarce.

drop_remainder

(Optional.) A boolean, representing whether the last batch should be dropped in the case it has fewer than batch_size elements; the default behavior is not to drop the smaller batch.

Value

A dataset. The dataset will have a structure of either:

  • When named_features is TRUE: list(x = list(feature_name = feature_values, ...), y = response_values)

  • When named_features is FALSE: list(x = features_array, y = response_values), where features_array is a Rank 2 array of ⁠(batch_size, num_features)⁠.

Note that the y element will be omitted when y is NULL.

See Also

input_fn() for use with tfestimators.


Reduces the input dataset to a single element.

Description

The transformation calls reduce_func successively on every element of the input dataset until the dataset is exhausted, aggregating information in its internal state. The initial_state argument is used for the initial state and the final state is returned as the result.

Usage

dataset_reduce(dataset, initial_state, reduce_func)

Arguments

dataset

A dataset

initial_state

An element representing the initial state of the transformation.

reduce_func

A function that maps ⁠(old_state, input_element)⁠ to new_state. It must take two arguments and return a new element. The structure of new_state must match the structure of initial_state.

Value

A dataset element.

See Also

Other dataset methods: dataset_batch(), dataset_cache(), dataset_collect(), dataset_concatenate(), dataset_decode_delim(), dataset_filter(), dataset_interleave(), dataset_map(), dataset_map_and_batch(), dataset_padded_batch(), dataset_prefetch(), dataset_prefetch_to_device(), dataset_repeat(), dataset_shuffle(), dataset_shuffle_and_repeat(), dataset_skip(), dataset_take(), dataset_take_while(), dataset_window()


A transformation that resamples a dataset to a target distribution.

Description

A transformation that resamples a dataset to a target distribution.

Usage

dataset_rejection_resample(
  dataset,
  class_func,
  target_dist,
  initial_dist = NULL,
  seed = NULL,
  name = NULL
)

Arguments

dataset

A tf.Dataset

class_func

A function mapping an element of the input dataset to a scalar tf.int32 tensor. Values should be in ⁠[0, num_classes)⁠.

target_dist

A floating point type tensor, shaped ⁠[num_classes]⁠.

initial_dist

(Optional.) A floating point type tensor, shaped ⁠[num_classes]⁠. If not provided, the true class distribution is estimated live in a streaming fashion.

seed

(Optional.) Integer seed for the resampler.

name

(Optional.) A name for the tf.data operation.

Value

A tf.Dataset

Examples

## Not run: 
initial_dist <- c(.5, .5)
target_dist <- c(.6, .4)
num_classes <- length(initial_dist)
num_samples <- 100000
data <- sample.int(num_classes, num_samples, prob = initial_dist, replace = TRUE)
dataset <- tensor_slices_dataset(data)
tally <- c(0, 0)
`add<-` <- function (x, value) x + value
# tfautograph::autograph({
#   for(i in dataset)
#     add(tally[as.numeric(i)]) <- 1
# })
dataset %>%
  as_array_iterator() %>%
  iterate(function(i) {
    add(tally[i]) <<- 1
  }, simplify = FALSE)
# The value of `tally` will be close to c(50000, 50000) as
# per the `initial_dist` distribution.
tally # c(50287, 49713)

tally <- c(0, 0)
dataset %>%
  dataset_rejection_resample(
    class_func = function(x) (x-1) %% 2,
    target_dist = target_dist,
    initial_dist = initial_dist
  ) %>%
  as_array_iterator() %>%
  iterate(function(element) {
    names(element) <- c("class_id", "i")
    add(tally[element$i]) <<- 1
  }, simplify = FALSE)
# The value of tally will be now be close to c(75000, 50000)
# thus satisfying the target_dist distribution.
tally # c(74822, 49921)

## End(Not run)

Repeats a dataset count times.

Description

Repeats a dataset count times.

Usage

dataset_repeat(dataset, count = NULL)

Arguments

dataset

A dataset

count

(Optional.) An integer value representing the number of times the elements of this dataset should be repeated. The default behavior (if count is NULL or -1) is for the elements to be repeated indefinitely.

Value

A dataset

See Also

Other dataset methods: dataset_batch(), dataset_cache(), dataset_collect(), dataset_concatenate(), dataset_decode_delim(), dataset_filter(), dataset_interleave(), dataset_map(), dataset_map_and_batch(), dataset_padded_batch(), dataset_prefetch(), dataset_prefetch_to_device(), dataset_reduce(), dataset_shuffle(), dataset_shuffle_and_repeat(), dataset_skip(), dataset_take(), dataset_take_while(), dataset_window()


A transformation that scans a function across an input dataset

Description

A transformation that scans a function across an input dataset

Usage

dataset_scan(dataset, initial_state, scan_func)

Arguments

dataset

A tensorflow dataset

initial_state

A nested structure of tensors, representing the initial state of the accumulator.

scan_func

A function that maps ⁠(old_state, input_element)⁠ to ⁠(new_state, output_element)⁠. It must take two arguments and return a pair of nested structures of tensors. The new_state must match the structure of initial_state.

Details

This transformation is a stateful relative of dataset_map(). In addition to mapping scan_func across the elements of the input dataset, scan() accumulates one or more state tensors, whose initial values are initial_state.

Examples

## Not run: 
initial_state <- as_tensor(0, dtype="int64")
scan_func <- function(state, i) list(state + i, state + i)
dataset <- range_dataset(0, 10) %>%
  dataset_scan(initial_state, scan_func)

reticulate::iterate(dataset, as.array) %>%
  unlist()
# 0  1  3  6 10 15 21 28 36 45

## End(Not run)

Creates a dataset that includes only 1 / num_shards of this dataset.

Description

This dataset operator is very useful when running distributed training, as it allows each worker to read a unique subset.

Usage

dataset_shard(dataset, num_shards, index)

Arguments

dataset

A dataset

num_shards

A integer representing the number of shards operating in parallel.

index

A integer, representing the worker index.

Value

A dataset


Randomly shuffles the elements of this dataset.

Description

Randomly shuffles the elements of this dataset.

Usage

dataset_shuffle(
  dataset,
  buffer_size,
  seed = NULL,
  reshuffle_each_iteration = NULL
)

Arguments

dataset

A dataset

buffer_size

An integer, representing the number of elements from this dataset from which the new dataset will sample.

seed

(Optional) An integer, representing the random seed that will be used to create the distribution.

reshuffle_each_iteration

(Optional) A boolean, which if true indicates that the dataset should be pseudorandomly reshuffled each time it is iterated over. (Defaults to TRUE). Not used if TF version < 1.15

Value

A dataset

See Also

Other dataset methods: dataset_batch(), dataset_cache(), dataset_collect(), dataset_concatenate(), dataset_decode_delim(), dataset_filter(), dataset_interleave(), dataset_map(), dataset_map_and_batch(), dataset_padded_batch(), dataset_prefetch(), dataset_prefetch_to_device(), dataset_reduce(), dataset_repeat(), dataset_shuffle_and_repeat(), dataset_skip(), dataset_take(), dataset_take_while(), dataset_window()


Shuffles and repeats a dataset returning a new permutation for each epoch.

Description

Shuffles and repeats a dataset returning a new permutation for each epoch.

Usage

dataset_shuffle_and_repeat(dataset, buffer_size, count = NULL, seed = NULL)

Arguments

dataset

A dataset

buffer_size

An integer, representing the number of elements from this dataset from which the new dataset will sample.

count

(Optional.) An integer value representing the number of times the elements of this dataset should be repeated. The default behavior (if count is NULL or -1) is for the elements to be repeated indefinitely.

seed

(Optional) An integer, representing the random seed that will be used to create the distribution.

See Also

Other dataset methods: dataset_batch(), dataset_cache(), dataset_collect(), dataset_concatenate(), dataset_decode_delim(), dataset_filter(), dataset_interleave(), dataset_map(), dataset_map_and_batch(), dataset_padded_batch(), dataset_prefetch(), dataset_prefetch_to_device(), dataset_reduce(), dataset_repeat(), dataset_shuffle(), dataset_skip(), dataset_take(), dataset_take_while(), dataset_window()


Creates a dataset that skips count elements from this dataset

Description

Creates a dataset that skips count elements from this dataset

Usage

dataset_skip(dataset, count)

Arguments

dataset

A dataset

count

An integer, representing the number of elements of this dataset that should be skipped to form the new dataset. If count is greater than the size of this dataset, the new dataset will contain no elements. If count is -1, skips the entire dataset.

Value

A dataset

See Also

Other dataset methods: dataset_batch(), dataset_cache(), dataset_collect(), dataset_concatenate(), dataset_decode_delim(), dataset_filter(), dataset_interleave(), dataset_map(), dataset_map_and_batch(), dataset_padded_batch(), dataset_prefetch(), dataset_prefetch_to_device(), dataset_reduce(), dataset_repeat(), dataset_shuffle(), dataset_shuffle_and_repeat(), dataset_take(), dataset_take_while(), dataset_window()


Persist the output of a dataset

Description

Persist the output of a dataset

Usage

dataset_snapshot(
  dataset,
  path,
  compression = c("AUTO", "GZIP", "SNAPPY", "None"),
  reader_func = NULL,
  shard_func = NULL
)

Arguments

dataset

A tensorflow dataset

path

Required. A directory to use for storing/loading the snapshot to/from.

compression

Optional. The type of compression to apply to the snapshot written to disk. Supported options are "GZIP", "SNAPPY", "AUTO" or NULL (values of "", NA, and "None" are synonymous with NULL) Defaults to AUTO, which attempts to pick an appropriate compression algorithm for the dataset.

reader_func

Optional. A function to control how to read data from snapshot shards.

shard_func

Optional. A function to control how to shard data when writing a snapshot.

Details

The snapshot API allows users to transparently persist the output of their preprocessing pipeline to disk, and materialize the pre-processed data on a different training run.

This API enables repeated preprocessing steps to be consolidated, and allows re-use of already processed data, trading off disk storage and network bandwidth for freeing up more valuable CPU resources and accelerator compute time.

https://github.com/tensorflow/community/blob/master/rfcs/20200107-tf-data-snapshot.md has detailed design documentation of this feature.

Users can specify various options to control the behavior of snapshot, including how snapshots are read from and written to by passing in user-defined functions to the reader_func and shard_func parameters.

shard_func is a user specified function that maps input elements to snapshot shards.

NUM_SHARDS <- parallel::detectCores()
dataset %>%
  dataset_enumerate() %>%
  dataset_snapshot(
    "/path/to/snapshot/dir",
    shard_func = function(index, ds_elem) x %% NUM_SHARDS) %>%
  dataset_map(function(index, ds_elem) ds_elem)

reader_func is a user specified function that accepts a single argument: a Dataset of Datasets, each representing a "split" of elements of the original dataset. The cardinality of the input dataset matches the number of the shards specified in the shard_func. The function should return a Dataset of elements of the original dataset.

Users may want specify this function to control how snapshot files should be read from disk, including the amount of shuffling and parallelism.

Here is an example of a standard reader function a user can define. This function enables both dataset shuffling and parallel reading of datasets:

user_reader_func <- function(datasets) {
  num_cores <- parallel::detectCores()
  datasets %>%
    dataset_shuffle(num_cores) %>%
    dataset_interleave(function(x) x, num_parallel_calls=AUTOTUNE)
}

dataset <- dataset %>%
  dataset_snapshot("/path/to/snapshot/dir",
                   reader_func = user_reader_func)

By default, snapshot parallelizes reads by the number of cores available on the system, but will not attempt to shuffle the data.


Creates a dataset with at most count elements from this dataset

Description

Creates a dataset with at most count elements from this dataset

Usage

dataset_take(dataset, count)

Arguments

dataset

A dataset

count

Integer representing the number of elements of this dataset that should be taken to form the new dataset. If count is -1, or if count is greater than the size of this dataset, the new dataset will contain all elements of this dataset.

Value

A dataset

See Also

Other dataset methods: dataset_batch(), dataset_cache(), dataset_collect(), dataset_concatenate(), dataset_decode_delim(), dataset_filter(), dataset_interleave(), dataset_map(), dataset_map_and_batch(), dataset_padded_batch(), dataset_prefetch(), dataset_prefetch_to_device(), dataset_reduce(), dataset_repeat(), dataset_shuffle(), dataset_shuffle_and_repeat(), dataset_skip(), dataset_take_while(), dataset_window()


A transformation that stops dataset iteration based on a predicate.

Description

A transformation that stops dataset iteration based on a predicate.

Usage

dataset_take_while(dataset, predicate, name = NULL)

Arguments

dataset

A TF dataset

predicate

A function that maps a nested structure of tensors (having shapes and types defined by self$output_shapes and self$output_types) to a scalar tf.bool tensor.

name

(Optional.) A name for the tf.data operation.

Details

Example usage:

 range_dataset(from = 0, to = 10) %>%
   dataset_take_while( ~ .x < 5) %>%
   as_array_iterator() %>%
   iterate(simplify = FALSE) %>% str()
 #> List of 5
 #> $ : num 0
 #> $ : num 1
 #> $ : num 2
 #> $ : num 3
 #> $ : num 4

Value

A TF Dataset

See Also

Other dataset methods: dataset_batch(), dataset_cache(), dataset_collect(), dataset_concatenate(), dataset_decode_delim(), dataset_filter(), dataset_interleave(), dataset_map(), dataset_map_and_batch(), dataset_padded_batch(), dataset_prefetch(), dataset_prefetch_to_device(), dataset_reduce(), dataset_repeat(), dataset_shuffle(), dataset_shuffle_and_repeat(), dataset_skip(), dataset_take(), dataset_window()


Unbatch a dataset

Description

Splits elements of a dataset into multiple elements.

Usage

dataset_unbatch(dataset, name = NULL)

Arguments

dataset

A dataset

name

(Optional.) A name for the tf.data operation.


A transformation that discards duplicate elements of a Dataset.

Description

Use this transformation to produce a dataset that contains one instance of each unique element in the input (See example).

Usage

dataset_unique(dataset, name = NULL)

Arguments

dataset

A tf.Dataset.

name

(Optional.) A name for the tf.data operation.

Value

A tf.Dataset

Note

This transformation only supports datasets which fit into memory and have elements of either tf.int32, tf.int64 or tf.string type.

Examples

## Not run: 
c(0, 37, 2, 37, 2, 1) %>% as_tensor("int32") %>%
  tensor_slices_dataset() %>%
  dataset_unique() %>%
  as_array_iterator() %>% iterate() %>% sort()
# [1]  0  1  2 37

## End(Not run)

Transform the dataset using the provided spec.

Description

Prepares the dataset to be used directly in a model.The transformed dataset is prepared to return tuples (x,y) that can be used directly in Keras.

Usage

dataset_use_spec(dataset, spec)

Arguments

dataset

A TensorFlow dataset.

spec

A feature specification created with feature_spec().

Value

A TensorFlow dataset.

See Also

Other Feature Spec Functions: feature_spec(), fit.FeatureSpec(), step_bucketized_column(), step_categorical_column_with_hash_bucket(), step_categorical_column_with_identity(), step_categorical_column_with_vocabulary_file(), step_categorical_column_with_vocabulary_list(), step_crossed_column(), step_embedding_column(), step_indicator_column(), step_numeric_column(), step_remove_column(), step_shared_embeddings_column(), steps

Examples

## Not run: 
library(tfdatasets)
data(hearts)
hearts <- tensor_slices_dataset(hearts) %>% dataset_batch(32)

# use the formula interface
spec <- feature_spec(hearts, target ~ age) %>%
  step_numeric_column(age)

spec_fit <- fit(spec)
final_dataset <- hearts %>% dataset_use_spec(spec_fit)

## End(Not run)

Combines input elements into a dataset of windows.

Description

Combines input elements into a dataset of windows.

Usage

dataset_window(dataset, size, shift = NULL, stride = 1, drop_remainder = FALSE)

Arguments

dataset

A dataset

size

representing the number of elements of the input dataset to combine into a window.

shift

epresenting the forward shift of the sliding window in each iteration. Defaults to size.

stride

representing the stride of the input elements in the sliding window.

drop_remainder

representing whether a window should be dropped in case its size is smaller ⁠than window_size⁠.

See Also

Other dataset methods: dataset_batch(), dataset_cache(), dataset_collect(), dataset_concatenate(), dataset_decode_delim(), dataset_filter(), dataset_interleave(), dataset_map(), dataset_map_and_batch(), dataset_padded_batch(), dataset_prefetch(), dataset_prefetch_to_device(), dataset_reduce(), dataset_repeat(), dataset_shuffle(), dataset_shuffle_and_repeat(), dataset_skip(), dataset_take(), dataset_take_while()


Specification for reading a record from a text file with delimited values

Description

Specification for reading a record from a text file with delimited values

Usage

delim_record_spec(
  example_file,
  delim = ",",
  skip = 0,
  names = NULL,
  types = NULL,
  defaults = NULL
)

csv_record_spec(
  example_file,
  skip = 0,
  names = NULL,
  types = NULL,
  defaults = NULL
)

tsv_record_spec(
  example_file,
  skip = 0,
  names = NULL,
  types = NULL,
  defaults = NULL
)

Arguments

example_file

File that provides an example of the records to be read. If you don't explicitly specify names and types (or defaults) then this file will be read to generate default values.

delim

Character delimiter to separate fields in a record (defaults to ",")

skip

Number of lines to skip before reading data. Note that if names is explicitly provided and there are column names witin the file then skip should be set to 1 to ensure that the column names are bypassed.

names

Character vector with column names (or NULL to automatically detect the column names from the first row of example_file).

If names is a character vector, the values will be used as the names of the columns, and the first row of the input will be read into the first row of the datset. Note that if the underlying text file also includes column names in it's first row, this row should be skipped explicitly with skip = 1.

If NULL, the first row of the example_file will be used as the column names, and will be skipped when reading the dataset.

types

Column types. If NULL and defaults is specified then types will be imputed from the defaults. Otherwise, all column types will be imputed from the first 1000 rows of the example_file. This is convenient (and fast), but not robust. If the imputation fails, you'll need to supply the correct types yourself.

Types can be explicitliy specified in a character vector as "integer", "double", and "character" (e.g. ⁠col_types = c("double", "double", "integer"⁠).

Alternatively, you can use a compact string representation where each character represents one column: c = character, i = integer, d = double (e.g. ⁠types = ⁠ddi').

defaults

List of default values which are used when data is missing from a record (e.g. ⁠list(0, 0, 0L⁠). If NULL then defaults will be automatically provided based on types (0 for numeric columns and "" for character columns).


Dense Features

Description

Retrives the Dense Features from a spec.

Usage

dense_features(spec)

Arguments

spec

A feature specification created with feature_spec().

Value

A list of feature columns.


Creates a feature specification.

Description

Used to create initialize a feature columns specification.

Usage

feature_spec(dataset, x, y = NULL)

Arguments

dataset

A TensorFlow dataset.

x

Features to include can use tidyselect::select_helpers() or a formula.

y

(Optional) The response variable. Can also be specified using a formula in the x argument.

Details

After creating the feature_spec object you can add steps using the step functions.

Value

a FeatureSpec object.

See Also

Other Feature Spec Functions: dataset_use_spec(), fit.FeatureSpec(), step_bucketized_column(), step_categorical_column_with_hash_bucket(), step_categorical_column_with_identity(), step_categorical_column_with_vocabulary_file(), step_categorical_column_with_vocabulary_list(), step_crossed_column(), step_embedding_column(), step_indicator_column(), step_numeric_column(), step_remove_column(), step_shared_embeddings_column(), steps

Examples

## Not run: 
library(tfdatasets)
data(hearts)
hearts <- tensor_slices_dataset(hearts) %>% dataset_batch(32)

# use the formula interface
spec <- feature_spec(hearts, target ~ .)

# select using `tidyselect` helpers
spec <- feature_spec(hearts, x = c(thal, age), y = target)

## End(Not run)

A dataset of all files matching a pattern

Description

A dataset of all files matching a pattern

Usage

file_list_dataset(file_pattern, shuffle = NULL, seed = NULL)

Arguments

file_pattern

A string, representing the filename pattern that will be matched.

shuffle

(Optional) If TRUE, the file names will be shuffled randomly. Defaults to TRUE

seed

(Optional) An integer, representing the random seed that will be used to create the distribution.

Details

For example, if we had the following files on our filesystem:

  • /path/to/dir/a.txt

  • /path/to/dir/b.csv

  • /path/to/dir/c.csv

If we pass "/path/to/dir/*.csv" as the file_pattern, the dataset would produce:

  • /path/to/dir/b.csv

  • /path/to/dir/c.csv

Value

A dataset of string corresponding to file names

Note

The shuffle and seed arguments only apply for TensorFlow >= v1.8


Fits a feature specification.

Description

This function will fit the specification. Depending on the steps added to the specification it will compute for example, the levels of categorical features, normalization constants, etc.

Usage

## S3 method for class 'FeatureSpec'
fit(object, dataset = NULL, ...)

Arguments

object

A feature specification created with feature_spec().

dataset

(Optional) A TensorFlow dataset. If NULL it will use the dataset provided when initilializing the feature_spec.

...

(unused)

Value

a fitted FeatureSpec object.

See Also

Other Feature Spec Functions: dataset_use_spec(), feature_spec(), step_bucketized_column(), step_categorical_column_with_hash_bucket(), step_categorical_column_with_identity(), step_categorical_column_with_vocabulary_file(), step_categorical_column_with_vocabulary_list(), step_crossed_column(), step_embedding_column(), step_indicator_column(), step_numeric_column(), step_remove_column(), step_shared_embeddings_column(), steps

Examples

## Not run: 
library(tfdatasets)
data(hearts)
hearts <- tensor_slices_dataset(hearts) %>% dataset_batch(32)

# use the formula interface
spec <- feature_spec(hearts, target ~ age) %>%
  step_numeric_column(age)

spec_fit <- fit(spec)
spec_fit

## End(Not run)

A dataset of fixed-length records from one or more binary files.

Description

A dataset of fixed-length records from one or more binary files.

Usage

fixed_length_record_dataset(
  filenames,
  record_bytes,
  header_bytes = NULL,
  footer_bytes = NULL,
  buffer_size = NULL
)

Arguments

filenames

A string tensor containing one or more filenames.

record_bytes

An integer representing the number of bytes in each record.

header_bytes

(Optional) An integer scalar representing the number of bytes to skip at the start of a file.

footer_bytes

(Optional) A integer scalar representing the number of bytes to ignore at the end of a file.

buffer_size

(Optional) A integer scalar representing the number of bytes to buffer when reading.

Value

A dataset


Identify the type of the variable.

Description

Can only be used inside the steps specifications to find variables by type.

Usage

has_type(match = "float32")

Arguments

match

A list of types to match.

See Also

Other Selectors: all_nominal(), all_numeric()


Heart Disease Data Set

Description

Heart disease (angiographic disease status) dataset.

Usage

hearts

Format

A data frame with 303 rows and 14 variables:

age

age in years

sex

sex (1 = male; 0 = female)

cp

chest pain type: Value 1: typical angina, Value 2: atypical angina, Value 3: non-anginal pain, Value 4: asymptomatic

trestbps

resting blood pressure (in mm Hg on admission to the hospital)

chol

serum cholestoral in mg/dl

fbs

(fasting blood sugar > 120 mg/dl) (1 = true; 0 = false)

restecg

resting electrocardiographic results: Value 0: normal, Value 1: having ST-T wave abnormality (T wave inversions and/or ST elevation or depression of > 0.05 mV), Value 2: showing probable or definite left ventricular hypertrophy by Estes' criteria

thalach

maximum heart rate achieved

exang

exercise induced angina (1 = yes; 0 = no)

oldpeak

ST depression induced by exercise relative to rest

slope

the slope of the peak exercise ST segment: Value 1: upsloping, Value 2: flat, Value 3: downsloping

ca

number of major vessels (0-3) colored by flourosopy

thal

3 = normal; 6 = fixed defect; 7 = reversable defect

target

diagnosis of heart disease angiographic

Source

https://archive.ics.uci.edu/ml/datasets/heart+Disease

References

The authors of the databases have requested that any publications resulting from the use of the data include the names of the principal investigator responsible for the data collection at each institution. They would be:

  1. Hungarian Institute of Cardiology. Budapest: Andras Janosi, M.D.

  2. University Hospital, Zurich, Switzerland: William Steinbrunn, M.D.

  3. University Hospital, Basel, Switzerland: Matthias Pfisterer, M.D.

  4. V.A. Medical Center, Long Beach and Cleveland Clinic Foundation:Robert Detrano, M.D., Ph.D.


Construct a tfestimators input function from a dataset

Description

Construct a tfestimators input function from a dataset

Usage

input_fn.tf_dataset(dataset, features, response = NULL)

Arguments

dataset

A dataset

features

The names of feature variables to be used.

response

The name of the response variable.

Details

Creating an input_fn from a dataset requires that the dataset consist of a set of named output tensors (e.g. like the dataset produced by the tfrecord_dataset() or text_line_dataset() function).

Value

An input_fn suitable for use with tfestimators train, evaluate, and predict methods


Get next element from iterator

Description

Returns a nested list of tensors that when evaluated will yield the next element(s) in the dataset.

Usage

iterator_get_next(iterator, name = NULL)

Arguments

iterator

An iterator

name

(Optional) A name for the created operation.

Value

A nested list of tensors

See Also

Other iterator functions: iterator_initializer(), iterator_make_initializer(), iterator_string_handle(), make-iterator


An operation that should be run to initialize this iterator.

Description

An operation that should be run to initialize this iterator.

Usage

iterator_initializer(iterator)

Arguments

iterator

An iterator

See Also

Other iterator functions: iterator_get_next(), iterator_make_initializer(), iterator_string_handle(), make-iterator


Create an operation that can be run to initialize this iterator

Description

Create an operation that can be run to initialize this iterator

Usage

iterator_make_initializer(iterator, dataset, name = NULL)

Arguments

iterator

An iterator

dataset

A dataset

name

(Optional) A name for the created operation.

Value

A tf$Operation that can be run to initialize this iterator on the given dataset.

See Also

Other iterator functions: iterator_get_next(), iterator_initializer(), iterator_string_handle(), make-iterator


String-valued tensor that represents this iterator

Description

String-valued tensor that represents this iterator

Usage

iterator_string_handle(iterator, name = NULL)

Arguments

iterator

An iterator

name

(Optional) A name for the created operation.

Value

Scalar tensor of type string

See Also

Other iterator functions: iterator_get_next(), iterator_initializer(), iterator_make_initializer(), make-iterator


Creates a list of inputs from a dataset

Description

DEPRECATED: Use keras3::layer_feature_space() instead.

Usage

layer_input_from_dataset(dataset)

Arguments

dataset

a TensorFlow dataset or a data.frame

Details

Create a list ok Keras input layers that can be used together with keras::layer_dense_features().

Value

a list of Keras input layers

Examples

## Not run: 
library(tfdatasets)
data(hearts)
hearts <- tensor_slices_dataset(hearts) %>% dataset_batch(32)

# use the formula interface
spec <- feature_spec(hearts, target ~ age + slope) %>%
  step_numeric_column(age, slope) %>%
  step_bucketized_column(age, boundaries = c(10, 20, 30))

spec <- fit(spec)
dataset <- hearts %>% dataset_use_spec(spec)

input <- layer_input_from_dataset(dataset)

## End(Not run)

Get Dataset length

Description

Returns the length of the dataset.

Usage

## S3 method for class 'tf_dataset'
length(x)

## S3 method for class 'tensorflow.python.data.ops.dataset_ops.DatasetV2'
length(x)

Arguments

x

a tf.data.Dataset object.

Value

Either Inf if the dataset is infinite, NA if the dataset length is unknown, or an R numeric if it is known.

Examples

## Not run: 
range_dataset(0, 42) %>% length()
# 42

range_dataset(0, 42) %>% dataset_repeat() %>% length()
# Inf

range_dataset(0, 42) %>% dataset_repeat() %>%
  dataset_filter(function(x) TRUE) %>% length()
# NA

## End(Not run)

Reads CSV files into a batched dataset

Description

Reads CSV files into a dataset, where each element is a (features, labels) list that corresponds to a batch of CSV rows. The features dictionary maps feature column names to tensors containing the corresponding feature data, and labels is a tensor containing the batch's label data.

Usage

make_csv_dataset(
  file_pattern,
  batch_size,
  column_names = NULL,
  column_defaults = NULL,
  label_name = NULL,
  select_columns = NULL,
  field_delim = ",",
  use_quote_delim = TRUE,
  na_value = "",
  header = TRUE,
  num_epochs = NULL,
  shuffle = TRUE,
  shuffle_buffer_size = 10000,
  shuffle_seed = NULL,
  prefetch_buffer_size = 1,
  num_parallel_reads = 1,
  num_parallel_parser_calls = 2,
  sloppy = FALSE,
  num_rows_for_inference = 100
)

Arguments

file_pattern

List of files or glob patterns of file paths containing CSV records.

batch_size

An integer representing the number of records to combine in a single batch.

column_names

An optional list of strings that corresponds to the CSV columns, in order. One per column of the input record. If this is not provided, infers the column names from the first row of the records. These names will be the keys of the features dict of each dataset element.

column_defaults

A optional list of default values for the CSV fields. One item per selected column of the input record. Each item in the list is either a valid CSV dtype (integer, numeric, or string), or a tensor with one of the aforementioned types. The tensor can either be a scalar default value (if the column is optional), or an empty tensor (if the column is required). If a dtype is provided instead of a tensor, the column is also treated as required. If this list is not provided, tries to infer types based on reading the first num_rows_for_inference rows of files specified, and assumes all columns are optional, defaulting to 0 for numeric values and "" for string values. If both this and select_columns are specified, these must have the same lengths, and column_defaults is assumed to be sorted in order of increasing column index.

label_name

A optional string corresponding to the label column. If provided, the data for this column is returned as a separate tensor from the features dictionary, so that the dataset complies with the format expected by a TF Estiamtors and Keras.

select_columns

(Ignored if using TensorFlow version 1.8.) An optional list of integer indices or string column names, that specifies a subset of columns of CSV data to select. If column names are provided, these must correspond to names provided in column_names or inferred from the file header lines. When this argument is specified, only a subset of CSV columns will be parsed and returned, corresponding to the columns specified. Using this results in faster parsing and lower memory usage. If both this and column_defaults are specified, these must have the same lengths, and column_defaults is assumed to be sorted in order of increasing column index.

field_delim

An optional string. Defaults to ",". Char delimiter to separate fields in a record.

use_quote_delim

An optional bool. Defaults to TRUE. If false, treats double quotation marks as regular characters inside of the string fields.

na_value

Additional string to recognize as NA/NaN.

header

A bool that indicates whether the first rows of provided CSV files correspond to header lines with column names, and should not be included in the data.

num_epochs

An integer specifying the number of times this dataset is repeated. If NULL, cycles through the dataset forever.

shuffle

A bool that indicates whether the input should be shuffled.

shuffle_buffer_size

Buffer size to use for shuffling. A large buffer size ensures better shuffling, but increases memory usage and startup time.

shuffle_seed

Randomization seed to use for shuffling.

prefetch_buffer_size

An int specifying the number of feature batches to prefetch for performance improvement. Recommended value is the number of batches consumed per training step.

num_parallel_reads

Number of threads used to read CSV records from files. If >1, the results will be interleaved.

num_parallel_parser_calls

(Ignored if using TensorFlow version 1.11 or later.) Number of parallel invocations of the CSV parsing function on CSV records.

sloppy

If TRUE, reading performance will be improved at the cost of non-deterministic ordering. If FALSE, the order of elements produced is deterministic prior to shuffling (elements are still randomized if shuffle=TRUE. Note that if the seed is set, then order of elements after shuffling is deterministic). Defaults to FALSE.

num_rows_for_inference

Number of rows of a file to use for type inference if record_defaults is not provided. If NULL, reads all the rows of all the files. Defaults to 100.

Value

A dataset, where each element is a (features, labels) list that corresponds to a batch of batch_size CSV rows. The features dictionary maps feature column names to tensors containing the corresponding column data, and labels is a tensor containing the column data for the label column specified by label_name.


Creates an iterator for enumerating the elements of this dataset.

Description

Creates an iterator for enumerating the elements of this dataset.

Usage

make_iterator_one_shot(dataset)

make_iterator_initializable(dataset, shared_name = NULL)

make_iterator_from_structure(
  output_types,
  output_shapes = NULL,
  shared_name = NULL
)

make_iterator_from_string_handle(
  string_handle,
  output_types,
  output_shapes = NULL
)

Arguments

dataset

A dataset

shared_name

(Optional) If non-empty, the returned iterator will be shared under the given name across multiple sessions that share the same devices (e.g. when using a remote server).

output_types

A nested structure of tf$DType objects corresponding to each component of an element of this iterator.

output_shapes

(Optional) A nested structure of tf$TensorShape objects corresponding to each component of an element of this dataset. If omitted, each component will have an unconstrainted shape.

string_handle

A scalar tensor of type string that evaluates to a handle produced by the iterator_string_handle() method.

Value

An Iterator over the elements of this dataset.

Initialization

For make_iterator_one_shot(), the returned iterator will be initialized automatically. A "one-shot" iterator does not currently support re-initialization.

For make_iterator_initializable(), the returned iterator will be in an uninitialized state, and you must run the object returned from iterator_initializer() before using it.

For make_iterator_from_structure(), the returned iterator is not bound to a particular dataset, and it has no initializer. To initialize the iterator, run the operation returned by iterator_make_initializer().

See Also

Other iterator functions: iterator_get_next(), iterator_initializer(), iterator_make_initializer(), iterator_string_handle()


Tensor(s) for retrieving the next batch from a dataset

Description

Tensor(s) for retrieving the next batch from a dataset

Usage

next_batch(dataset)

Arguments

dataset

A dataset

Details

To access the underlying data within the dataset you iteratively evaluate the tensor(s) to read batches of data.

Note that in many cases you won't need to explicitly evaluate the tensors. Rather, you will pass the tensors to another function that will perform the evaluation (e.g. the Keras layer_input() and compile() functions).

If you do need to perform iteration manually by evaluating the tensors, there are a couple of possible approaches to controlling/detecting when iteration should end.

One approach is to create a dataset that yields batches infinitely (traversing the dataset multiple times with different batches randomly drawn). In this case you'd use another mechanism like a global step counter or detecting a learning plateau.

Another approach is to detect when all batches have been yielded from the dataset. When the tensor reaches the end of iteration a runtime error will occur. You can catch and ignore the error when it occurs by wrapping your iteration code in the with_dataset() function.

See the examples below for a demonstration of each of these methods of iteration.

Value

Tensor(s) that can be evaluated to yield the next batch of training data.

Examples

## Not run: 

# iteration with 'infinite' dataset and explicit step counter

library(tfdatasets)
dataset <- text_line_dataset("mtcars.csv", record_spec = mtcars_spec) %>%
  dataset_prepare(x = c(mpg, disp), y = cyl) %>%
  dataset_shuffle(5000) %>%
  dataset_batch(128) %>%
  dataset_repeat() # repeat infinitely
batch <- next_batch(dataset)
steps <- 200
for (i in 1:steps) {
  # use batch$x and batch$y tensors
}

# iteration that detects and ignores end of iteration error

library(tfdatasets)
dataset <- text_line_dataset("mtcars.csv", record_spec = mtcars_spec) %>%
  dataset_prepare(x = c(mpg, disp), y = cyl) %>%
  dataset_batch(128) %>%
  dataset_repeat(10)
batch <- next_batch(dataset)
with_dataset({
  while(TRUE) {
    # use batch$x and batch$y tensors
  }
})

## End(Not run)

Output types and shapes

Description

Output types and shapes

Usage

output_types(object)

output_shapes(object)

Arguments

object

A dataset or iterator

Value

output_types() returns the type of each component of an element of this object; output_shapes() returns the shape of each component of an element of this object


Creates a Dataset of pseudorandom values

Description

Creates a Dataset of pseudorandom values

Usage

random_integer_dataset(seed = NULL)

Arguments

seed

(Optional) If specified, the dataset produces a deterministic sequence of values.

Details

The dataset generates a sequence of uniformly distributed integer values (dtype int64).


Creates a dataset of a step-separated range of values.

Description

Creates a dataset of a step-separated range of values.

Usage

range_dataset(from = 0, to = 0, by = 1, ..., dtype = tf$int64)

Arguments

from

Range start

to

Range end (exclusive)

by

Increment of the sequence

...

ignored

dtype

Output dtype. (Optional, default: tf$int64).


Read a dataset from a set of files

Description

Read files into a dataset, optionally processing them in parallel.

Usage

read_files(
  files,
  reader,
  ...,
  parallel_files = 1,
  parallel_interleave = 1,
  num_shards = NULL,
  shard_index = NULL
)

Arguments

files

List of filenames or glob pattern for files (e.g. "*.csv")

reader

Function that maps a file into a dataset (e.g. text_line_dataset() or tfrecord_dataset()).

...

Additional arguments to pass to reader function

parallel_files

An integer, number of files to process in parallel

parallel_interleave

An integer, number of consecutive records to produce from each file before cycling to another file.

num_shards

An integer representing the number of shards operating in parallel.

shard_index

An integer, representing the worker index. Shared indexes are 0 based so for e.g. 8 shards valid indexes would be 0-7.

Value

A dataset


Samples elements at random from the datasets in datasets.

Description

Samples elements at random from the datasets in datasets.

Usage

sample_from_datasets(
  datasets,
  weights = NULL,
  seed = NULL,
  stop_on_empty_dataset = TRUE
)

Arguments

datasets

A list ofobjects with compatible structure.

weights

(Optional.) A list of length(datasets) floating-point values where weights[[i]] represents the probability with which an element should be sampled from datasets[[i]], or a dataset object where each element is such a list. Defaults to a uniform distribution across datasets.

seed

(Optional.) An integer, representing the random seed that will be used to create the distribution.

stop_on_empty_dataset

If TRUE, selection stops if it encounters an empty dataset. If FALSE, it skips empty datasets. It is recommended to set it to TRUE. Otherwise, the selected elements start off as the user intends, but may change as input datasets become empty. This can be difficult to detect since the dataset starts off looking correct. Defaults to TRUE.

Value

A dataset that interleaves elements from datasets at random, according to weights if provided, otherwise with uniform probability.


List of pre-made scalers

Description

See Also

step_numeric_column


Creates an instance of a min max scaler

Description

This scaler will learn the min and max of the numeric variable and use this to create a normalizer_fn.

Usage

scaler_min_max()

See Also

scaler to a complete list of normalizers

Other scaler: scaler_standard()


Creates an instance of a standard scaler

Description

This scaler will learn the mean and the standard deviation and use this to create a normalizer_fn.

Usage

scaler_standard()

See Also

scaler to a complete list of normalizers

Other scaler: scaler_min_max()


Selectors

Description

List of selectors that can be used to specify variables inside steps.

Usage

cur_info_env

Format

An object of class environment of length 0.

Selectors


Splits each rank-N tf$SparseTensor in this dataset row-wise.

Description

Splits each rank-N tf$SparseTensor in this dataset row-wise.

Usage

sparse_tensor_slices_dataset(sparse_tensor)

Arguments

sparse_tensor

A tf$SparseTensor.

Value

A dataset of rank-(N-1) sparse tensors.

See Also

Other tensor datasets: tensor_slices_dataset(), tensors_dataset()


A dataset consisting of the results from a SQL query

Description

A dataset consisting of the results from a SQL query

Usage

sql_record_spec(names, types)

sql_dataset(driver_name, data_source_name, query, record_spec)

sqlite_dataset(filename, query, record_spec)

Arguments

names

Names of columns returned from the query

types

List of tf$DType objects (e.g. tf$int32, tf$double, tf$string) representing the types of the columns returned by the query.

driver_name

String containing the database type. Currently, the only supported value is 'sqlite'.

data_source_name

String containing a connection string to connect to the database.

query

String containing the SQL query to execute.

record_spec

Names and types of database columns

filename

Filename for the database

Value

A dataset


Creates bucketized columns

Description

Use this step to create bucketized columns from numeric columns.

Usage

step_bucketized_column(spec, ..., boundaries)

Arguments

spec

A feature specification created with feature_spec().

...

Comma separated list of variable names to apply the step. selectors can also be used.

boundaries

A sorted list or tuple of floats specifying the boundaries.

Value

a FeatureSpec object.

See Also

steps for a complete list of allowed steps.

Other Feature Spec Functions: dataset_use_spec(), feature_spec(), fit.FeatureSpec(), step_categorical_column_with_hash_bucket(), step_categorical_column_with_identity(), step_categorical_column_with_vocabulary_file(), step_categorical_column_with_vocabulary_list(), step_crossed_column(), step_embedding_column(), step_indicator_column(), step_numeric_column(), step_remove_column(), step_shared_embeddings_column(), steps

Examples

## Not run: 
library(tfdatasets)
data(hearts)
file <- tempfile()
writeLines(unique(hearts$thal), file)
hearts <- tensor_slices_dataset(hearts) %>% dataset_batch(32)

# use the formula interface
spec <- feature_spec(hearts, target ~ age) %>%
  step_numeric_column(age) %>%
  step_bucketized_column(age, boundaries = c(10, 20, 30))
spec_fit <- fit(spec)
final_dataset <- hearts %>% dataset_use_spec(spec_fit)

## End(Not run)

Creates a categorical column with hash buckets specification

Description

Represents sparse feature where ids are set by hashing.

Usage

step_categorical_column_with_hash_bucket(
  spec,
  ...,
  hash_bucket_size,
  dtype = tf$string
)

Arguments

spec

A feature specification created with feature_spec().

...

Comma separated list of variable names to apply the step. selectors can also be used.

hash_bucket_size

An int > 1. The number of buckets.

dtype

The type of features. Only string and integer types are supported.

Value

a FeatureSpec object.

See Also

steps for a complete list of allowed steps.

Other Feature Spec Functions: dataset_use_spec(), feature_spec(), fit.FeatureSpec(), step_bucketized_column(), step_categorical_column_with_identity(), step_categorical_column_with_vocabulary_file(), step_categorical_column_with_vocabulary_list(), step_crossed_column(), step_embedding_column(), step_indicator_column(), step_numeric_column(), step_remove_column(), step_shared_embeddings_column(), steps

Examples

## Not run: 
library(tfdatasets)
data(hearts)
hearts <- tensor_slices_dataset(hearts) %>% dataset_batch(32)

# use the formula interface
spec <- feature_spec(hearts, target ~ thal) %>%
  step_categorical_column_with_hash_bucket(thal, hash_bucket_size = 3)

spec_fit <- fit(spec)
final_dataset <- hearts %>% dataset_use_spec(spec_fit)

## End(Not run)

Create a categorical column with identity

Description

Use this when your inputs are integers in the range ⁠[0-num_buckets)⁠.

Usage

step_categorical_column_with_identity(
  spec,
  ...,
  num_buckets,
  default_value = NULL
)

Arguments

spec

A feature specification created with feature_spec().

...

Comma separated list of variable names to apply the step. selectors can also be used.

num_buckets

Range of inputs and outputs is ⁠[0, num_buckets)⁠.

default_value

If NULL, this column's graph operations will fail for out-of-range inputs. Otherwise, this value must be in the range ⁠[0, num_buckets)⁠, and will replace inputs in that range.

Value

a FeatureSpec object.

See Also

steps for a complete list of allowed steps.

Other Feature Spec Functions: dataset_use_spec(), feature_spec(), fit.FeatureSpec(), step_bucketized_column(), step_categorical_column_with_hash_bucket(), step_categorical_column_with_vocabulary_file(), step_categorical_column_with_vocabulary_list(), step_crossed_column(), step_embedding_column(), step_indicator_column(), step_numeric_column(), step_remove_column(), step_shared_embeddings_column(), steps

Examples

## Not run: 
library(tfdatasets)
data(hearts)

hearts$thal <- as.integer(as.factor(hearts$thal)) - 1L

hearts <- tensor_slices_dataset(hearts) %>% dataset_batch(32)

# use the formula interface
spec <- feature_spec(hearts, target ~ thal) %>%
  step_categorical_column_with_identity(thal, num_buckets = 5)

spec_fit <- fit(spec)
final_dataset <- hearts %>% dataset_use_spec(spec_fit)

## End(Not run)

Creates a categorical column with vocabulary file

Description

Use this function when the vocabulary of a categorical variable is written to a file.

Usage

step_categorical_column_with_vocabulary_file(
  spec,
  ...,
  vocabulary_file,
  vocabulary_size = NULL,
  dtype = tf$string,
  default_value = NULL,
  num_oov_buckets = 0L
)

Arguments

spec

A feature specification created with feature_spec().

...

Comma separated list of variable names to apply the step. selectors can also be used.

vocabulary_file

The vocabulary file name.

vocabulary_size

Number of the elements in the vocabulary. This must be no greater than length of vocabulary_file, if less than length, later values are ignored. If None, it is set to the length of vocabulary_file.

dtype

The type of features. Only string and integer types are supported.

default_value

The integer ID value to return for out-of-vocabulary feature values, defaults to -1. This can not be specified with a positive num_oov_buckets.

num_oov_buckets

Non-negative integer, the number of out-of-vocabulary buckets. All out-of-vocabulary inputs will be assigned IDs in the range ⁠[vocabulary_size, vocabulary_size+num_oov_buckets)⁠ based on a hash of the input value. A positive num_oov_buckets can not be specified with default_value.

Value

a FeatureSpec object.

See Also

steps for a complete list of allowed steps.

Other Feature Spec Functions: dataset_use_spec(), feature_spec(), fit.FeatureSpec(), step_bucketized_column(), step_categorical_column_with_hash_bucket(), step_categorical_column_with_identity(), step_categorical_column_with_vocabulary_list(), step_crossed_column(), step_embedding_column(), step_indicator_column(), step_numeric_column(), step_remove_column(), step_shared_embeddings_column(), steps

Examples

## Not run: 
library(tfdatasets)
data(hearts)
file <- tempfile()
writeLines(unique(hearts$thal), file)
hearts <- tensor_slices_dataset(hearts) %>% dataset_batch(32)

# use the formula interface
spec <- feature_spec(hearts, target ~ thal) %>%
  step_categorical_column_with_vocabulary_file(thal, vocabulary_file = file)

spec_fit <- fit(spec)
final_dataset <- hearts %>% dataset_use_spec(spec_fit)

## End(Not run)

Creates a categorical column specification

Description

Creates a categorical column specification

Usage

step_categorical_column_with_vocabulary_list(
  spec,
  ...,
  vocabulary_list = NULL,
  dtype = NULL,
  default_value = -1L,
  num_oov_buckets = 0L
)

Arguments

spec

A feature specification created with feature_spec().

...

Comma separated list of variable names to apply the step. selectors can also be used.

vocabulary_list

An ordered iterable defining the vocabulary. Each feature is mapped to the index of its value (if present) in vocabulary_list. Must be castable to dtype. If NULL the vocabulary will be defined as all unique values in the dataset provided when fitting the specification.

dtype

The type of features. Only string and integer types are supported. If NULL, it will be inferred from vocabulary_list.

default_value

The integer ID value to return for out-of-vocabulary feature values, defaults to -1. This can not be specified with a positive num_oov_buckets.

num_oov_buckets

Non-negative integer, the number of out-of-vocabulary buckets. All out-of-vocabulary inputs will be assigned IDs in the range ⁠[lenght(vocabulary_list), length(vocabulary_list)+num_oov_buckets)⁠ based on a hash of the input value. A positive num_oov_buckets can not be specified with default_value.

Value

a FeatureSpec object.

See Also

steps for a complete list of allowed steps.

Other Feature Spec Functions: dataset_use_spec(), feature_spec(), fit.FeatureSpec(), step_bucketized_column(), step_categorical_column_with_hash_bucket(), step_categorical_column_with_identity(), step_categorical_column_with_vocabulary_file(), step_crossed_column(), step_embedding_column(), step_indicator_column(), step_numeric_column(), step_remove_column(), step_shared_embeddings_column(), steps

Examples

## Not run: 
library(tfdatasets)
data(hearts)
hearts <- tensor_slices_dataset(hearts) %>% dataset_batch(32)

# use the formula interface
spec <- feature_spec(hearts, target ~ thal) %>%
  step_categorical_column_with_vocabulary_list(thal)

spec_fit <- fit(spec)
final_dataset <- hearts %>% dataset_use_spec(spec_fit)

## End(Not run)

Creates crosses of categorical columns

Description

Use this step to create crosses between categorical columns.

Usage

step_crossed_column(spec, ..., hash_bucket_size, hash_key = NULL)

Arguments

spec

A feature specification created with feature_spec().

...

Comma separated list of variable names to apply the step. selectors can also be used.

hash_bucket_size

An int > 1. The number of buckets.

hash_key

(optional) Specify the hash_key that will be used by the FingerprintCat64 function to combine the crosses fingerprints on SparseCrossOp.

Value

a FeatureSpec object.

See Also

steps for a complete list of allowed steps.

Other Feature Spec Functions: dataset_use_spec(), feature_spec(), fit.FeatureSpec(), step_bucketized_column(), step_categorical_column_with_hash_bucket(), step_categorical_column_with_identity(), step_categorical_column_with_vocabulary_file(), step_categorical_column_with_vocabulary_list(), step_embedding_column(), step_indicator_column(), step_numeric_column(), step_remove_column(), step_shared_embeddings_column(), steps

Examples

## Not run: 
library(tfdatasets)
data(hearts)
file <- tempfile()
writeLines(unique(hearts$thal), file)
hearts <- tensor_slices_dataset(hearts) %>% dataset_batch(32)

# use the formula interface
spec <- feature_spec(hearts, target ~ age) %>%
  step_numeric_column(age) %>%
  step_bucketized_column(age, boundaries = c(10, 20, 30))
spec_fit <- fit(spec)
final_dataset <- hearts %>% dataset_use_spec(spec_fit)

## End(Not run)

Creates embeddings columns

Description

Use this step to create ambeddings columns from categorical columns.

Usage

step_embedding_column(
  spec,
  ...,
  dimension = function(x) {
     as.integer(x^0.25)
 },
  combiner = "mean",
  initializer = NULL,
  ckpt_to_load_from = NULL,
  tensor_name_in_ckpt = NULL,
  max_norm = NULL,
  trainable = TRUE
)

Arguments

spec

A feature specification created with feature_spec().

...

Comma separated list of variable names to apply the step. selectors can also be used.

dimension

An integer specifying dimension of the embedding, must be > 0. Can also be a function of the size of the vocabulary.

combiner

A string specifying how to reduce if there are multiple entries in a single row. Currently 'mean', 'sqrtn' and 'sum' are supported, with 'mean' the default. 'sqrtn' often achieves good accuracy, in particular with bag-of-words columns. Each of this can be thought as example level normalizations on the column. For more information, see tf.embedding_lookup_sparse.

initializer

A variable initializer function to be used in embedding variable initialization. If not specified, defaults to tf.truncated_normal_initializer with mean 0.0 and standard deviation 1/sqrt(dimension).

ckpt_to_load_from

String representing checkpoint name/pattern from which to restore column weights. Required if tensor_name_in_ckpt is not NULL.

tensor_name_in_ckpt

Name of the Tensor in ckpt_to_load_from from which to restore the column weights. Required if ckpt_to_load_from is not NULL.

max_norm

If not NULL, embedding values are l2-normalized to this value.

trainable

Whether or not the embedding is trainable. Default is TRUE.

Value

a FeatureSpec object.

See Also

steps for a complete list of allowed steps.

Other Feature Spec Functions: dataset_use_spec(), feature_spec(), fit.FeatureSpec(), step_bucketized_column(), step_categorical_column_with_hash_bucket(), step_categorical_column_with_identity(), step_categorical_column_with_vocabulary_file(), step_categorical_column_with_vocabulary_list(), step_crossed_column(), step_indicator_column(), step_numeric_column(), step_remove_column(), step_shared_embeddings_column(), steps

Examples

## Not run: 
library(tfdatasets)
data(hearts)
file <- tempfile()
writeLines(unique(hearts$thal), file)
hearts <- tensor_slices_dataset(hearts) %>% dataset_batch(32)

# use the formula interface
spec <- feature_spec(hearts, target ~ thal) %>%
  step_categorical_column_with_vocabulary_list(thal) %>%
  step_embedding_column(thal, dimension = 3)
spec_fit <- fit(spec)
final_dataset <- hearts %>% dataset_use_spec(spec_fit)

## End(Not run)

Creates Indicator Columns

Description

Use this step to create indicator columns from categorical columns.

Usage

step_indicator_column(spec, ...)

Arguments

spec

A feature specification created with feature_spec().

...

Comma separated list of variable names to apply the step. selectors can also be used.

Value

a FeatureSpec object.

See Also

steps for a complete list of allowed steps.

Other Feature Spec Functions: dataset_use_spec(), feature_spec(), fit.FeatureSpec(), step_bucketized_column(), step_categorical_column_with_hash_bucket(), step_categorical_column_with_identity(), step_categorical_column_with_vocabulary_file(), step_categorical_column_with_vocabulary_list(), step_crossed_column(), step_embedding_column(), step_numeric_column(), step_remove_column(), step_shared_embeddings_column(), steps

Examples

## Not run: 
library(tfdatasets)
data(hearts)
file <- tempfile()
writeLines(unique(hearts$thal), file)
hearts <- tensor_slices_dataset(hearts) %>% dataset_batch(32)

# use the formula interface
spec <- feature_spec(hearts, target ~ thal) %>%
  step_categorical_column_with_vocabulary_list(thal) %>%
  step_indicator_column(thal)
spec_fit <- fit(spec)
final_dataset <- hearts %>% dataset_use_spec(spec_fit)

## End(Not run)

Creates a numeric column specification

Description

step_numeric_column creates a numeric column specification. It can also be used to normalize numeric columns.

Usage

step_numeric_column(
  spec,
  ...,
  shape = 1L,
  default_value = NULL,
  dtype = tf$float32,
  normalizer_fn = NULL
)

Arguments

spec

A feature specification created with feature_spec().

...

Comma separated list of variable names to apply the step. selectors can also be used.

shape

An iterable of integers specifies the shape of the Tensor. An integer can be given which means a single dimension Tensor with given width. The Tensor representing the column will have the shape of batch_size + shape.

default_value

A single value compatible with dtype or an iterable of values compatible with dtype which the column takes on during tf.Example parsing if data is missing. A default value of NULL will cause tf.parse_example to fail if an example does not contain this column. If a single value is provided, the same value will be applied as the default value for every item. If an iterable of values is provided, the shape of the default_value should be equal to the given shape.

dtype

defines the type of values. Default value is tf$float32. Must be a non-quantized, real integer or floating point type.

normalizer_fn

If not NULL, a function that can be used to normalize the value of the tensor after default_value is applied for parsing. Normalizer function takes the input Tensor as its argument, and returns the output Tensor. (e.g. ⁠function(x) (x - 3.0) / 4.2)⁠. Please note that even though the most common use case of this function is normalization, it can be used for any kind of Tensorflow transformations. You can also a pre-made scaler, in this case a function will be created after fit.FeatureSpec is called on the feature specification.

Value

a FeatureSpec object.

See Also

steps for a complete list of allowed steps.

Other Feature Spec Functions: dataset_use_spec(), feature_spec(), fit.FeatureSpec(), step_bucketized_column(), step_categorical_column_with_hash_bucket(), step_categorical_column_with_identity(), step_categorical_column_with_vocabulary_file(), step_categorical_column_with_vocabulary_list(), step_crossed_column(), step_embedding_column(), step_indicator_column(), step_remove_column(), step_shared_embeddings_column(), steps

Examples

## Not run: 
library(tfdatasets)
data(hearts)
hearts <- tensor_slices_dataset(hearts) %>% dataset_batch(32)

# use the formula interface
spec <- feature_spec(hearts, target ~ age) %>%
  step_numeric_column(age, normalizer_fn = standard_scaler())

spec_fit <- fit(spec)
final_dataset <- hearts %>% dataset_use_spec(spec_fit)

## End(Not run)

Creates a step that can remove columns

Description

Removes features of the feature specification.

Usage

step_remove_column(spec, ...)

Arguments

spec

A feature specification created with feature_spec().

...

Comma separated list of variable names to apply the step. selectors can also be used.

Value

a FeatureSpec object.

See Also

steps for a complete list of allowed steps.

Other Feature Spec Functions: dataset_use_spec(), feature_spec(), fit.FeatureSpec(), step_bucketized_column(), step_categorical_column_with_hash_bucket(), step_categorical_column_with_identity(), step_categorical_column_with_vocabulary_file(), step_categorical_column_with_vocabulary_list(), step_crossed_column(), step_embedding_column(), step_indicator_column(), step_numeric_column(), step_shared_embeddings_column(), steps

Examples

## Not run: 
library(tfdatasets)
data(hearts)
hearts <- tensor_slices_dataset(hearts) %>% dataset_batch(32)

# use the formula interface
spec <- feature_spec(hearts, target ~ age) %>%
  step_numeric_column(age, normalizer_fn = scaler_standard()) %>%
  step_bucketized_column(age, boundaries = c(20, 50)) %>%
  step_remove_column(age)

spec_fit <- fit(spec)
final_dataset <- hearts %>% dataset_use_spec(spec_fit)

## End(Not run)

Creates shared embeddings for categorical columns

Description

This is similar to step_embedding_column, except that it produces a list of embedding columns that share the same embedding weights.

Usage

step_shared_embeddings_column(
  spec,
  ...,
  dimension,
  combiner = "mean",
  initializer = NULL,
  shared_embedding_collection_name = NULL,
  ckpt_to_load_from = NULL,
  tensor_name_in_ckpt = NULL,
  max_norm = NULL,
  trainable = TRUE
)

Arguments

spec

A feature specification created with feature_spec().

...

Comma separated list of variable names to apply the step. selectors can also be used.

dimension

An integer specifying dimension of the embedding, must be > 0. Can also be a function of the size of the vocabulary.

combiner

A string specifying how to reduce if there are multiple entries in a single row. Currently 'mean', 'sqrtn' and 'sum' are supported, with 'mean' the default. 'sqrtn' often achieves good accuracy, in particular with bag-of-words columns. Each of this can be thought as example level normalizations on the column. For more information, see tf.embedding_lookup_sparse.

initializer

A variable initializer function to be used in embedding variable initialization. If not specified, defaults to tf.truncated_normal_initializer with mean 0.0 and standard deviation 1/sqrt(dimension).

shared_embedding_collection_name

Optional collective name of these columns. If not given, a reasonable name will be chosen based on the names of categorical_columns.

ckpt_to_load_from

String representing checkpoint name/pattern from which to restore column weights. Required if tensor_name_in_ckpt is not NULL.

tensor_name_in_ckpt

Name of the Tensor in ckpt_to_load_from from which to restore the column weights. Required if ckpt_to_load_from is not NULL.

max_norm

If not NULL, embedding values are l2-normalized to this value.

trainable

Whether or not the embedding is trainable. Default is TRUE.

Value

a FeatureSpec object.

Note

Does not work in the eager mode.

See Also

steps for a complete list of allowed steps.

Other Feature Spec Functions: dataset_use_spec(), feature_spec(), fit.FeatureSpec(), step_bucketized_column(), step_categorical_column_with_hash_bucket(), step_categorical_column_with_identity(), step_categorical_column_with_vocabulary_file(), step_categorical_column_with_vocabulary_list(), step_crossed_column(), step_embedding_column(), step_indicator_column(), step_numeric_column(), step_remove_column(), steps


Steps for feature columns specification.

Description

List of steps that can be used to specify columns in the feature_spec interface.

Steps

See Also

  • selectors for a list of selectors that can be used to specify variables.

Other Feature Spec Functions: dataset_use_spec(), feature_spec(), fit.FeatureSpec(), step_bucketized_column(), step_categorical_column_with_hash_bucket(), step_categorical_column_with_identity(), step_categorical_column_with_vocabulary_file(), step_categorical_column_with_vocabulary_list(), step_crossed_column(), step_embedding_column(), step_indicator_column(), step_numeric_column(), step_remove_column(), step_shared_embeddings_column()


Creates a dataset whose elements are slices of the given tensors.

Description

Creates a dataset whose elements are slices of the given tensors.

Usage

tensor_slices_dataset(tensors)

Arguments

tensors

A nested structure of tensors, each having the same size in the first dimension.

Value

A dataset.

See Also

Other tensor datasets: sparse_tensor_slices_dataset(), tensors_dataset()


Creates a dataset with a single element, comprising the given tensors.

Description

Creates a dataset with a single element, comprising the given tensors.

Usage

tensors_dataset(tensors)

Arguments

tensors

A nested structure of tensors.

Value

A dataset.

See Also

Other tensor datasets: sparse_tensor_slices_dataset(), tensor_slices_dataset()


A dataset comprising lines from one or more text files.

Description

A dataset comprising lines from one or more text files.

Usage

text_line_dataset(
  filenames,
  compression_type = NULL,
  record_spec = NULL,
  parallel_records = NULL
)

Arguments

filenames

String(s) specifying one or more filenames

compression_type

A string, one of: NULL (no compression), "ZLIB", or "GZIP".

record_spec

(Optional) Specification used to decode delimimted text lines into records (see delim_record_spec()).

parallel_records

(Optional) An integer, representing the number of records to decode in parallel. If not specified, records will be processed sequentially.

Value

A dataset


A dataset comprising records from one or more TFRecord files.

Description

A dataset comprising records from one or more TFRecord files.

Usage

tfrecord_dataset(
  filenames,
  compression_type = NULL,
  buffer_size = NULL,
  num_parallel_reads = NULL
)

Arguments

filenames

String(s) specifying one or more filenames

compression_type

A string, one of: NULL (no compression), "ZLIB", or "GZIP".

buffer_size

An integer representing the number of bytes in the read buffer. (0 means no buffering).

num_parallel_reads

An integer representing the number of files to read in parallel. Defaults to reading files sequentially.

Details

If the dataset encodes a set of TFExample instances, then they can be decoded into named records using the dataset_map() function (see example below).

Examples

## Not run: 

# Creates a dataset that reads all of the examples from two files, and extracts
# the image and label features.
filenames <- c("/var/data/file1.tfrecord", "/var/data/file2.tfrecord")
dataset <- tfrecord_dataset(filenames) %>%
  dataset_map(function(example_proto) {
    features <- list(
      image = tf$FixedLenFeature(shape(), tf$string, default_value = ""),
      label = tf$FixedLenFeature(shape(), tf$int32, default_value = 0L)
    )
    tf$parse_single_example(example_proto, features)
  })

## End(Not run)

Execute code that traverses a dataset until an out of range condition occurs

Description

Execute code that traverses a dataset until an out of range condition occurs

Usage

until_out_of_range(expr)

out_of_range_handler(e)

Arguments

expr

Expression to execute (will be executed multiple times until the condition occurs)

e

Error object

Details

When a dataset iterator reaches the end, an out of range runtime error will occur. This function will catch and ignore the error when it occurs.

Examples

## Not run: 
library(tfdatasets)
dataset <- text_line_dataset("mtcars.csv", record_spec = mtcars_spec) %>%
  dataset_batch(128) %>%
  dataset_repeat(10) %>%
  dataset_prepare(x = c(mpg, disp), y = cyl)

iter <- make_iterator_one_shot(dataset)
next_batch <- iterator_get_next(iter)

until_out_of_range({
  batch <- sess$run(next_batch)
  # use batch$x and batch$y tensors
})

## End(Not run)

Execute code that traverses a dataset

Description

Execute code that traverses a dataset

Usage

with_dataset(expr)

Arguments

expr

Expression to execute

Details

When a dataset iterator reaches the end, an out of range runtime error will occur. You can catch and ignore the error when it occurs by wrapping your iteration code in a call to with_dataset() (see the example below for an illustration).

Examples

## Not run: 
library(tfdatasets)
dataset <- text_line_dataset("mtcars.csv", record_spec = mtcars_spec) %>%
  dataset_prepare(x = c(mpg, disp), y = cyl) %>%
  dataset_batch(128) %>%
  dataset_repeat(10)

iter <- make_iterator_one_shot(dataset)
next_batch <- iterator_get_next(iter)

with_dataset({
  while(TRUE) {
    batch <- sess$run(next_batch)
    # use batch$x and batch$y tensors
  }
})

## End(Not run)

Creates a dataset by zipping together the given datasets.

Description

Merges datasets together into pairs or tuples that contain an element from each dataset.

Usage

zip_datasets(...)

Arguments

...

Datasets to zip (or a single argument with a list or list of lists of datasets).

Value

A dataset