Title: | Interface to 'Python' |
---|---|
Description: | Interface to 'Python' modules, classes, and functions. When calling into 'Python', R data types are automatically converted to their equivalent 'Python' types. When values are returned from 'Python' to R they are converted back to R types. Compatible with all versions of 'Python' >= 2.7. |
Authors: | Tomasz Kalinowski [ctb, cre], Kevin Ushey [aut], JJ Allaire [aut], RStudio [cph, fnd], Yuan Tang [aut, cph] , Dirk Eddelbuettel [ctb, cph], Bryan Lewis [ctb, cph], Sigrid Keydana [ctb], Ryan Hafen [ctb, cph], Marcus Geelnard [ctb, cph] (TinyThread library, http://tinythreadpp.bitsnbites.eu/) |
Maintainer: | Tomasz Kalinowski <[email protected]> |
License: | Apache License 2.0 |
Version: | 1.40.0.9000 |
Built: | 2025-01-14 15:23:09 UTC |
Source: | https://github.com/rstudio/reticulate |
Reticulate provides S3 Ops Group Generic Methods for Python objects. The methods invoke the equivalent python method of the object.
## S3 method for class 'python.builtin.object' e1 == e2 ## S3 method for class 'python.builtin.object' e1 != e2 ## S3 method for class 'python.builtin.object' e1 < e2 ## S3 method for class 'python.builtin.object' e1 > e2 ## S3 method for class 'python.builtin.object' e1 >= e2 ## S3 method for class 'python.builtin.object' e1 <= e2 ## S3 method for class 'python.builtin.object' e1 + e2 ## S3 method for class 'python.builtin.object' e1 - e2 ## S3 method for class 'python.builtin.object' e1 * e2 ## S3 method for class 'python.builtin.object' e1 / e2 ## S3 method for class 'python.builtin.object' e1 %/% e2 ## S3 method for class 'python.builtin.object' e1 %% e2 ## S3 method for class 'python.builtin.object' e1 ^ e2 ## S3 method for class 'python.builtin.object' e1 & e2 ## S3 method for class 'python.builtin.object' e1 | e2 ## S3 method for class 'python.builtin.object' !e1 ## S3 method for class 'python.builtin.object' x %*% y
## S3 method for class 'python.builtin.object' e1 == e2 ## S3 method for class 'python.builtin.object' e1 != e2 ## S3 method for class 'python.builtin.object' e1 < e2 ## S3 method for class 'python.builtin.object' e1 > e2 ## S3 method for class 'python.builtin.object' e1 >= e2 ## S3 method for class 'python.builtin.object' e1 <= e2 ## S3 method for class 'python.builtin.object' e1 + e2 ## S3 method for class 'python.builtin.object' e1 - e2 ## S3 method for class 'python.builtin.object' e1 * e2 ## S3 method for class 'python.builtin.object' e1 / e2 ## S3 method for class 'python.builtin.object' e1 %/% e2 ## S3 method for class 'python.builtin.object' e1 %% e2 ## S3 method for class 'python.builtin.object' e1 ^ e2 ## S3 method for class 'python.builtin.object' e1 & e2 ## S3 method for class 'python.builtin.object' e1 | e2 ## S3 method for class 'python.builtin.object' !e1 ## S3 method for class 'python.builtin.object' x %*% y
e1 , e2 , x , y
|
A python object. |
Result from evaluating the Python expression. If either of the
arguments to the operator was a Python object with convert=FALSE
, then
the result will also be a Python object with convert=FALSE
set.
Otherwise, the result will be converted to an R object if possible.
R expression | Python expression | First python method invoked |
x == y |
x == y |
type(x).__eq__(x, y) |
x != y |
x != y |
type(x).__ne__(x, y) |
x < y |
x < y |
type(x).__lt__(x, y) |
x > y |
x > y |
type(x).__gt__(x, y) |
x >= y |
x >= y |
type(x).__ge__(x, y) |
x <= y |
x <= y |
type(x).__le__(x, y) |
+ x |
+ x |
type(x).__pos__(x) |
- y |
- x |
type(x).__neg__(x) |
x + y |
x + y |
type(x).__add__(x, y) |
x - y |
x - y |
type(x).__sub__(x, y) |
x * y |
x * y |
type(x).__mul__(x, y) |
x / y |
x / y |
type(x).__truediv__(x, y) |
x %/% y |
x // y |
type(x).__floordiv__(x, y) |
x %% y |
x % y |
type(x).__mod__(x, y) |
x ^ y |
x ** y |
type(x).__pow__(x, y) |
x & y |
x & y |
type(x).__and__(x, y) |
x | y |
x | y |
type(x).__or__(x, y) |
!x |
~x |
type(x).__not__(x) |
x %*% y |
x @ y |
type(x).__matmul__(x, y) |
Note: If the initial Python method invoked raises a NotImplemented
Exception, the Python interpreter will attempt to use the reflected
variant of the method from the second argument. The arithmetic operators
will call the equivalent double underscore (dunder) method with an "r" prefix. For
instance, when evaluating the expression x + y
, if type(x).__add__(x, y)
raises a NotImplemented
exception, then the interpreter will attempt
type(y).__radd__(y, x)
. The comparison operators follow a different
sequence of fallbacks; refer to the Python documentation for more details.
Reshape (reindex) a multi-dimensional array, using row-major (C-style) reshaping semantics by default.
array_reshape(x, dim, order = c("C", "F"))
array_reshape(x, dim, order = c("C", "F"))
x |
An array |
dim |
The new dimensions to be set on the array. |
order |
The order in which elements of |
This function differs from e.g. dim(x) <- dim
in a very important way: by
default, array_reshape()
will fill the new dimensions in row-major (C
-style)
ordering, while dim<-()
will fill new dimensions in column-major
(F
ortran-style) ordering. This is done to be consistent with libraries
like NumPy, Keras, and TensorFlow, which default to this sort of ordering when
reshaping arrays. See the examples for why this difference may be important.
## Not run: # let's construct a 2x2 array from a vector of 4 elements x <- 1:4 # rearrange will fill the array row-wise array_reshape(x, c(2, 2)) # [,1] [,2] # [1,] 1 2 # [2,] 3 4 # setting the dimensions 'fills' the array col-wise dim(x) <- c(2, 2) x # [,1] [,2] # [1,] 1 3 # [2,] 2 4 ## End(Not run)
## Not run: # let's construct a 2x2 array from a vector of 4 elements x <- 1:4 # rearrange will fill the array row-wise array_reshape(x, c(2, 2)) # [,1] [,2] # [1,] 1 2 # [2,] 3 4 # setting the dimensions 'fills' the array col-wise dim(x) <- c(2, 2) x # [,1] [,2] # [1,] 1 3 # [2,] 2 4 ## End(Not run)
Traverse a Python iterator or generator
as_iterator(x) iterate(it, f = base::identity, simplify = TRUE) iter_next(it, completed = NULL)
as_iterator(x) iterate(it, f = base::identity, simplify = TRUE) iter_next(it, completed = NULL)
x |
Python iterator or iterable |
it |
Python iterator or generator |
f |
Function to apply to each item. By default applies the
|
simplify |
Should the result be simplified to a vector if possible? |
completed |
Sentinel value to return from |
Simplification is only attempted all elements are length 1 vectors of type "character", "complex", "double", "integer", or "logical".
For iterate()
, A list or vector containing the results of calling
f
on each item in x
(invisibly); For iter_next()
, the next
value in the iteration (or the sentinel completed
value if the iteration
is complete).
Convert Python bytes to an R character or raw vector
## S3 method for class 'python.builtin.bytes' as.character( x, encoding = "utf-8", errors = "strict", nul = stop("Embedded NUL in string."), ... ) ## S3 method for class 'python.builtin.bytes' as.raw(x)
## S3 method for class 'python.builtin.bytes' as.character( x, encoding = "utf-8", errors = "strict", nul = stop("Embedded NUL in string."), ... ) ## S3 method for class 'python.builtin.bytes' as.raw(x)
x |
object to be coerced or tested. |
encoding |
Encoding to use for conversion (defaults to utf-8) |
errors |
Policy for handling conversion errors. Default is 'strict' which raises an error. Other possible values are 'ignore' and 'replace'. |
nul |
Action to take if the bytes contain an embedded NUL (
|
... |
further arguments passed to or from other methods. |
as.character.python.builtin.str()
# A bytes object with embedded NULs b <- import_builtins(convert = FALSE)$bytes( as.raw(c(0x61, 0x20, 0x62, 0x00, 0x63, 0x20, 0x64)) # "a b<NUL>c d" ) try(as.character(b)) # Error : Embedded NUL in string. as.character(b, nul = "<NUL>") # Replace: "a b<NUL>c d" as.character(b, nul = "") # Remove: "a bc d" as.character(b, nul = NULL) # Split: "a b" "c d"
# A bytes object with embedded NULs b <- import_builtins(convert = FALSE)$bytes( as.raw(c(0x61, 0x20, 0x62, 0x00, 0x63, 0x20, 0x64)) # "a b<NUL>c d" ) try(as.character(b)) # Error : Embedded NUL in string. as.character(b, nul = "<NUL>") # Replace: "a b<NUL>c d" as.character(b, nul = "") # Remove: "a bc d" as.character(b, nul = NULL) # Split: "a b" "c d"
Convert a Python string to an R Character Vector
## S3 method for class 'python.builtin.str' as.character(x, nul = stop("Embedded NUL in string."), ...)
## S3 method for class 'python.builtin.str' as.character(x, nul = stop("Embedded NUL in string."), ...)
x |
A Python string |
nul |
Action to take if the Python string contains an embedded NUL (
|
... |
Unused |
An R character vector. The returned vector will always of length 1,
unless nul = NULL
was supplied.
# Given a Python function that errors when it attempts to return # a string with an embedded NUL py_run_string(' def get_string_w_nul(): return "a b" + chr(0) + "c d" ') get_string_w_nul <- py$get_string_w_nul try(get_string_w_nul()) # Error : Embedded NUL in string. # To get the string into R, use `r_to_py()` on the function to stop it from # eagerly converting the Python string to R, and then call `as.character()` with # a `nul` argument supplied to convert the string to R. get_string_w_nul <- r_to_py(get_string_w_nul) get_string_w_nul() # unconverted python string: inherits(x, 'python.builtin.str') as.character(get_string_w_nul(), nul = "<NUL>") # Replace: "a b<NUL>c d" as.character(get_string_w_nul(), nul = "") # Remove: "a bc d" as.character(get_string_w_nul(), nul = NULL) # Split: "a b" "c d" # cleanup example rm(get_string_w_nul); py$get_string_w_nul <- NULL
# Given a Python function that errors when it attempts to return # a string with an embedded NUL py_run_string(' def get_string_w_nul(): return "a b" + chr(0) + "c d" ') get_string_w_nul <- py$get_string_w_nul try(get_string_w_nul()) # Error : Embedded NUL in string. # To get the string into R, use `r_to_py()` on the function to stop it from # eagerly converting the Python string to R, and then call `as.character()` with # a `nul` argument supplied to convert the string to R. get_string_w_nul <- r_to_py(get_string_w_nul) get_string_w_nul() # unconverted python string: inherits(x, 'python.builtin.str') as.character(get_string_w_nul(), nul = "<NUL>") # Replace: "a b<NUL>c d" as.character(get_string_w_nul(), nul = "") # Remove: "a bc d" as.character(get_string_w_nul(), nul = NULL) # Split: "a b" "c d" # cleanup example rm(get_string_w_nul); py$get_string_w_nul <- NULL
This function runs a command in a chosen conda environment.
conda_run2( cmd, args = c(), conda = "auto", envname = NULL, cmd_line = paste(shQuote(cmd), paste(args, collapse = " ")), intern = FALSE, echo = !intern )
conda_run2( cmd, args = c(), conda = "auto", envname = NULL, cmd_line = paste(shQuote(cmd), paste(args, collapse = " ")), intern = FALSE, echo = !intern )
cmd |
The system command to be invoked, as a character string. |
args |
A character vector of arguments to the command. The arguments should
be quoted e.g. by |
conda |
The path to a |
envname |
The name of, or path to, a conda environment. |
cmd_line |
The command line to be executed, as a character string. This
is automatically generated from |
intern |
A logical (not |
echo |
A logical (not |
Note that, whilst the syntax is similar to system2()
, the function
dynamically generates a shell script with commands to activate the chosen
conda environent. This avoids issues with quoting, as discussed in this
GitHub issue.
conda_run2()
runs a command in the desired conda environment. If
intern = TRUE
the output is returned as a character vector; if intern = FALSE
(the
deafult), then the return value is the error code (0 for success). See
shell()
(on windows) or system2()
on macOS or Linux for more details.
Tools for managing Python conda
environments.
conda_list(conda = "auto") conda_create( envname = NULL, packages = NULL, ..., forge = TRUE, channel = character(), environment = NULL, conda = "auto", python_version = miniconda_python_version(), additional_create_args = character() ) conda_clone(envname, ..., clone = "base", conda = "auto") conda_export( envname, file = if (json) "environment.json" else "environment.yml", json = FALSE, ..., conda = "auto" ) conda_remove(envname, packages = NULL, conda = "auto") conda_install( envname = NULL, packages, forge = TRUE, channel = character(), pip = FALSE, pip_options = character(), pip_ignore_installed = FALSE, conda = "auto", python_version = NULL, additional_create_args = character(), additional_install_args = character(), ... ) conda_binary(conda = "auto") conda_exe(conda = "auto") conda_version(conda = "auto") conda_update(conda = "auto") conda_python(envname = NULL, conda = "auto", all = FALSE) conda_search( matchspec, forge = TRUE, channel = character(), conda = "auto", ... ) condaenv_exists(envname = NULL, conda = "auto")
conda_list(conda = "auto") conda_create( envname = NULL, packages = NULL, ..., forge = TRUE, channel = character(), environment = NULL, conda = "auto", python_version = miniconda_python_version(), additional_create_args = character() ) conda_clone(envname, ..., clone = "base", conda = "auto") conda_export( envname, file = if (json) "environment.json" else "environment.yml", json = FALSE, ..., conda = "auto" ) conda_remove(envname, packages = NULL, conda = "auto") conda_install( envname = NULL, packages, forge = TRUE, channel = character(), pip = FALSE, pip_options = character(), pip_ignore_installed = FALSE, conda = "auto", python_version = NULL, additional_create_args = character(), additional_install_args = character(), ... ) conda_binary(conda = "auto") conda_exe(conda = "auto") conda_version(conda = "auto") conda_update(conda = "auto") conda_python(envname = NULL, conda = "auto", all = FALSE) conda_search( matchspec, forge = TRUE, channel = character(), conda = "auto", ... ) condaenv_exists(envname = NULL, conda = "auto")
conda |
The path to a |
envname |
The name of, or path to, a conda environment. |
packages |
A character vector, indicating package names which should be
installed or removed. Use |
... |
Optional arguments, reserved for future expansion. |
forge |
Boolean; include the conda-forge repository? |
channel |
An optional character vector of conda channels to include.
When specified, the |
environment |
The path to an environment definition, generated via
(for example) |
python_version |
The version of Python to be installed. Set this if you'd like to change the version of Python associated with a particular conda environment. |
additional_create_args |
An optional character vector of additional
arguments to use in the call to |
clone |
The name of the conda environment to be cloned. |
file |
The path where the conda environment definition will be written. |
json |
Boolean; should the environment definition be written as JSON? By default, conda exports environments as YAML. |
pip |
Boolean; use |
pip_options |
An optional character vector of additional command line
arguments to be passed to |
pip_ignore_installed |
Ignore already-installed versions when using pip?
(defaults to |
additional_install_args |
An optional character vector of additional
arguments to use in the call to |
all |
Boolean; report all instances of Python found? |
matchspec |
A conda MatchSpec query string. |
conda_list()
returns an R data.frame
, with name
giving the name of
the associated environment, and python
giving the path to the Python
binary associated with that environment.
conda_create()
returns the path to the Python binary associated with the
newly-created conda environment.
conda_clone()
returns the path to Python within the newly-created
conda environment.
conda_export()
returns the path to the exported environment definition,
invisibly.
conda_search()
returns an R data.frame
describing packages that
matched against matchspec
. The data frame will usually include
fields name
giving the package name, version
giving the package
version, build
giving the package build, and channel
giving the
channel the package is hosted on.
Most of reticulate
's conda APIs accept a conda
parameter, used to control
the conda
binary used in their operation. When conda = "auto"
,
reticulate
will attempt to automatically find a conda installation.
The following locations are searched, in order:
The location specified by the reticulate.conda_binary
R option,
The location specified by the RETICULATE_CONDA
environment variable,
The miniconda_path()
location (if it exists),
The program PATH
,
A set of pre-defined locations where conda is typically installed.
To force reticulate
to use a particular conda
binary, we recommend
setting:
options(reticulate.conda_binary = "/path/to/conda")
This can be useful if your conda installation lives in a location that
reticulate
is unable to automatically discover.
Configure a Python environment, satisfying the Python dependencies of any loaded R packages.
configure_environment(package = NULL, force = FALSE)
configure_environment(package = NULL, force = FALSE)
package |
The name of a package to configure. When |
force |
Boolean; force configuration of the Python environment? Note
that |
Normally, this function should only be used by package authors, who want to ensure that their package dependencies are installed in the active Python environment. For example:
.onLoad <- function(libname, pkgname) { reticulate::configure_environment(pkgname) }
If the Python session has not yet been initialized, or if the user is not
using the default Miniconda Python installation, no action will be taken.
Otherwise, reticulate
will take this as a signal to install any required
Python dependencies into the user's Python environment.
If you'd like to disable reticulate
's auto-configure behavior altogether,
you can set the environment variable:
RETICULATE_AUTOCONFIGURE = FALSE
e.g. in your ~/.Renviron
or similar.
Note that, in the case where the Python session has not yet been initialized,
reticulate
will automatically ensure your required Python dependencies
are installed after the Python session is initialized (when appropriate).
Create a Python dictionary object, including a dictionary whose keys are other Python objects rather than character vectors.
dict(..., convert = FALSE) py_dict(keys, values, convert = FALSE)
dict(..., convert = FALSE) py_dict(keys, values, convert = FALSE)
... |
Name/value pairs for dictionary (or a single named list to be converted to a dictionary). |
convert |
|
keys |
Keys to dictionary (can be Python objects) |
values |
Values for dictionary |
A Python dictionary
The returned dictionary will not automatically convert its elements
from Python to R. You can do manual conversion with the py_to_r()
function or pass convert = TRUE
to request automatic conversion.
This provides a reticulate
engine for knitr
, suitable for usage when
attempting to render Python chunks. Using this engine allows for shared state
between Python chunks in a document – that is, variables defined by one
Python chunk can be used by later Python chunks.
eng_python(options)
eng_python(options)
options |
Chunk options, as provided by |
The engine can be activated by setting (for example)
knitr::knit_engines$set(python = reticulate::eng_python)
Typically, this will be set within a document's setup chunk, or by the
environment requesting that Python chunks be processed by this engine.
Note that knitr
(since version 1.18) will use the reticulate
engine by
default when executing Python chunks within an R Markdown document.
knitr
chunk optionsFor most options, reticulate's python engine behaves the same as the default R engine included in knitr, but they might not support all the same features. Options in italic are equivalent to knitr, but with modified behavior.
eval
(TRUE
, logical): If TRUE
, all expressions in the chunk are evaluated. If FALSE
,
no expression is evaluated. Unlike knitr's R engine, it doesn't support numeric
values indicating the expressions to evaluate.
echo
(TRUE
, logical): Whether to display the source code in the output document. Unlike
knitr's R engine, it doesn't support numeric values indicating the expressions
to display.
results
('markup'
, character): Controls how to display the text results. Note that this option only
applies to normal text output (not warnings, messages, or errors). The behavior
should be identical to knitr's R engine.
collapse
(FALSE
, logical): Whether to, if possible, collapse all the source and output blocks
from one code chunk into a single block (by default, they are written to separate blocks).
This option only applies to Markdown documents.
error
(TRUE
, logical): Whether to preserve errors. If FALSE
evaluation stops
on errors. (Note that RMarkdown sets it to FALSE
).
warning
(TRUE
, logical): Whether to preserve warnings in the output. If FALSE, all warnings
will be suppressed. Doesn't support indices.
include
(TRUE
, logical): Whether to include the chunk output in the output document.
If FALSE
, nothing will be written into the output document, but the code is still
evaluated and plot files are generated if there are any plots in the chunk, so you
can manually insert figures later.
dev
: The graphical device to generate plot files. See knitr documentation for
additional information.
base.dir
(NULL
; character): An absolute directory under which the plots
are generated.
strip.white
(TRUE; logical): Whether to remove blank lines in the beginning
or end of a source code block in the output.
dpi
(72; numeric): The DPI (dots per inch) for bitmap devices (dpi * inches = pixels).
fig.width
, fig.height
(both are 7; numeric): Width and height of the plot
(in inches), to be used in the graphics device.
label
: The chunk label for each chunk is assumed to be unique within the
document. This is especially important for cache and plot filenames, because
these filenames are based on chunk labels. Chunks without labels will be
assigned labels like unnamed-chunk-i, where i is an incremental number.
jupyter_compat
(FALSE, logical): If TRUE
then, like in Jupyter notebooks,
only the last expression in the chunk is printed to the output.
out.width.px
, out.height.px
(810, 400, both integers): Width and
height of the plot in the output document, which can be different with its
physical fig.width
and fig.height
, i.e., plots can be scaled in the output
document. Unlike knitr's out.width
, this is always set in pixels.
altair.fig.width
, altair.fig.height
: If set, is used instead of
out.width.px
and out.height.px
when writing Altair charts.
Import the specified Python module, making it available for use from R.
import(module, as = NULL, convert = TRUE, delay_load = FALSE) import_main(convert = TRUE, delay_load = FALSE) import_builtins(convert = TRUE, delay_load = FALSE) import_from_path(module, path = ".", convert = TRUE, delay_load = FALSE)
import(module, as = NULL, convert = TRUE, delay_load = FALSE) import_main(convert = TRUE, delay_load = FALSE) import_builtins(convert = TRUE, delay_load = FALSE) import_from_path(module, path = ".", convert = TRUE, delay_load = FALSE)
module |
The name of the Python module. |
as |
An alias for module name (affects names of R classes). Note that this is an advanced parameter that should generally only be used in package development (since it affects the S3 name of the imported class and can therefore interfere with S3 method dispatching). |
convert |
Boolean; should Python objects be automatically converted
to their R equivalent? If set to |
delay_load |
Boolean; delay loading the module until it is first used?
When |
path |
The path from which the module should be imported. |
An R object wrapping a Python module. Module attributes can be accessed
via the $
operator, or via py_get_attr()
.
Python's built-in functions (e.g. len()
) can be accessed via Python's
built-in module. Because the name of this module has changed between Python 2
and Python 3, we provide the function import_builtins()
to abstract over
that name change.
The delay_load
parameter accepts a variety of inputs. If you just need to
ensure your module is lazy-loaded (e.g. because you are a package author and
want to avoid initializing Python before the user has explicitly requested it),
then passing TRUE
is normally the right choice.
You can also provide a named list: "before_load"
, "on_load"
and
"on_error"
can be functions , which act as callbacks to be run when the
module is later loaded. "environment"
can be a character
vector of preferred python environment names to
search for and use. For example:
delay_load = list( # run before the module is loaded before_load = function() { ... } # run immediately after the module is loaded on_load = function() { ... } # run if an error occurs during module import on_error = function(error) { ... } environment = c("r-preferred-venv1", "r-preferred-venv2") )
Alternatively, if you supply only a single function, that will be treated as
an on_load
handler.
import_from_path()
can be used in you need to import a module from an arbitrary
filesystem path. This is most commonly used when importing modules bundled with an
R package – for example:
path <- system.file("python", package = <package>) reticulate::import_from_path(<module>, path = path, delay_load = TRUE)
## Not run: main <- import_main() sys <- import("sys") ## End(Not run)
## Not run: main <- import_main() sys <- import("sys") ## End(Not run)
Download the Miniconda installer, and use it to install Miniconda.
install_miniconda(path = miniconda_path(), update = TRUE, force = FALSE)
install_miniconda(path = miniconda_path(), update = TRUE, force = FALSE)
path |
The location where Miniconda is (or should be) installed. Note
that the Miniconda installer does not support paths containing spaces. See
miniconda_path for more details on the default path used by |
update |
Boolean; update to the latest version of Miniconda after installation? |
force |
Boolean; force re-installation if Miniconda is already installed at the requested path? |
For arm64 builds of R on macOS, install_miniconda()
will use
binaries from miniforge instead.
If you encounter binary incompatibilities between R and Miniconda, a
scripted build and installation of Python from sources can be performed by
install_python()
Other miniconda-tools:
miniconda_uninstall()
,
miniconda_update()
Download and install Python, using the pyenv. and pyenv-win projects.
install_python( version = "3.10:latest", list = FALSE, force = FALSE, optimized = TRUE )
install_python( version = "3.10:latest", list = FALSE, force = FALSE, optimized = TRUE )
version |
The version of Python to install. |
list |
Boolean; if set, list the set of available Python versions? |
force |
Boolean; force re-installation even if the requested version of Python is already installed? |
optimized |
Boolean; if |
In general, it is recommended that Python virtual environments are created
using the copies of Python installed by install_python()
. For example:
library(reticulate) version <- "3.9.12" install_python(version) virtualenv_create("my-environment", version = version) use_virtualenv("my-environment") # There is also support for a ":latest" suffix to select the latest patch release install_python("3.9:latest") # install latest patch available at python.org # select the latest 3.9.* patch installed locally virtualenv_create("my-environment", version = "3.9:latest")
On macOS and Linux this will build Python from sources, which may take a few minutes. Installation will be faster if some build dependencies are preinstalled. See https://github.com/pyenv/pyenv/wiki#suggested-build-environment for example commands you can run to pre-install system dependencies (requires administrator privileges).
If optimized = TRUE
, (the default) Python is build with:
PYTHON_CONFIGURE_OPTS="--enable-shared --enable-optimizations --with-lto" PYTHON_CFLAGS="-march=native -mtune=native"
If optimized = FALSE
, Python is built with:
PYTHON_CONFIGURE_OPTS=--enable-shared
On Windows, prebuilt installers from https://www.python.org are used.
The path to the Miniconda installation to use. By default, an OS-specific
path is used. If you'd like to instead set your own path, you can set the
RETICULATE_MINICONDA_PATH
environment variable.
miniconda_path()
miniconda_path()
Uninstall Miniconda.
miniconda_uninstall(path = miniconda_path())
miniconda_uninstall(path = miniconda_path())
path |
The path in which Miniconda is installed. |
Other miniconda-tools:
install_miniconda()
,
miniconda_update()
Update Miniconda to the latest version.
miniconda_update(path = miniconda_path())
miniconda_update(path = miniconda_path())
path |
The location where Miniconda is (or should be) installed. Note
that the Miniconda installer does not support paths containing spaces. See
miniconda_path for more details on the default path used by |
Other miniconda-tools:
install_miniconda()
,
miniconda_uninstall()
nameOfClass()
for Python objectsThis generic enables passing a python.builtin.type
object as the 2nd
argument to base::inherits()
.
## S3 method for class 'python.builtin.type' nameOfClass(x)
## S3 method for class 'python.builtin.type' nameOfClass(x)
x |
A Python class |
A scalar string matching the S3 class of objects constructed from the type.
## Not run: numpy <- import("numpy") x <- r_to_py(array(1:3)) inherits(x, numpy$ndarray) ## End(Not run)
## Not run: numpy <- import("numpy") x <- r_to_py(array(1:3)) inherits(x, numpy$ndarray) ## End(Not run)
Create NumPy arrays and convert the data type and in-memory ordering of existing NumPy arrays.
np_array(data, dtype = NULL, order = "C")
np_array(data, dtype = NULL, order = "C")
data |
Vector or existing NumPy array providing data for the array |
dtype |
Numpy data type (e.g. "float32", "float64", etc.) |
order |
Memory ordering for array. "C" means C order, "F" means Fortran order. |
A NumPy array object.
The py
object provides a means for interacting
with the Python main session directly from R. Python
objects accessed through py
are automatically converted
into R objects, and can be used with any other R
functions as needed.
py
py
An R object acting as an interface to the Python main module.
Check if Python is available on this system
py_available(initialize = FALSE) py_numpy_available(initialize = FALSE)
py_available(initialize = FALSE) py_numpy_available(initialize = FALSE)
initialize |
|
Logical indicating whether Python is initialized.
The py_numpy_available
function is a superset of the
py_available
function (it calls py_available
first before
checking for NumPy).
Equivalent to bool(x)
in Python, or not not x
.
py_bool(x)
py_bool(x)
x |
A python object. |
If the Python object defines a __bool__
method, then that is invoked.
Otherwise, if the object defines a __len__
method, then TRUE
is
returned if the length is nonzero. If neither __len__
nor __bool__
are defined, then the Python object is considered TRUE
.
An R scalar logical: TRUE
or FALSE
. If x
is a
null pointer or Python is not initialized, FALSE
is returned.
Capture and return Python output
py_capture_output(expr, type = c("stdout", "stderr"))
py_capture_output(expr, type = c("stdout", "stderr"))
expr |
Expression to capture stdout for |
type |
Streams to capture (defaults to both stdout and stderr) |
Character vector with output
Get or (re)set the last Python error encountered.
py_clear_last_error() py_last_error(exception)
py_clear_last_error() py_last_error(exception)
exception |
A python exception object. If provided, the provided exception is set as the last exception. |
For py_last_error()
, NULL
if no error has yet been encountered.
Otherwise, a named list with entries:
"type"
: R string, name of the exception class.
"value"
: R string, formatted exception message.
"traceback"
: R character vector, the formatted python traceback,
"message"
: The full formatted raised exception, as it would be printed in
Python. Includes the traceback, type, and value.
"r_trace"
: A data.frame
with class rlang_trace
and columns:
call
: The R callstack, full_call
, summarized for pretty printing.
full_call
: The R callstack. (Output of sys.calls()
at the error callsite).
parent
: The parent of each frame in callstack. (Output of sys.parents()
at the error callsite).
Additional columns for internals use: namespace
, visible
, scope
.
And attribute "exception"
, a 'python.builtin.Exception'
object.
The named list has class
"py_error"
, and has a default print
method
that is the equivalent of cat(py_last_error()$message)
.
## Not run: # see last python exception with R traceback reticulate::py_last_error() # see the full R callstack from the last Python exception reticulate::py_last_error()$r_trace$full_call # run python code that might error, # without modifying the user-visible python exception safe_len <- function(x) { last_err <- py_last_error() tryCatch({ # this might raise a python exception if x has no `__len__` method. import_builtins()$len(x) }, error = function(e) { # py_last_error() was overwritten, is now "no len method for 'object'" py_last_error(last_err) # restore previous exception -1L }) } safe_len(py_eval("object")) ## End(Not run)
## Not run: # see last python exception with R traceback reticulate::py_last_error() # see the full R callstack from the last Python exception reticulate::py_last_error()$r_trace$full_call # run python code that might error, # without modifying the user-visible python exception safe_len <- function(x) { last_err <- py_last_error() tryCatch({ # this might raise a python exception if x has no `__len__` method. import_builtins()$len(x) }, error = function(e) { # py_last_error() was overwritten, is now "no len method for 'object'" py_last_error(last_err) # restore previous exception -1L }) } safe_len(py_eval("object")) ## End(Not run)
Retrieve information about the version of Python currently being used by
reticulate
.
py_config()
py_config()
If Python has not yet been initialized, then calling py_config()
will force
the initialization of Python. See py_discover_config()
for more details.
Information about the version of Python in use, as an R list with
class "py_config"
.
Delete an attribute of a Python object
py_del_attr(x, name)
py_del_attr(x, name)
x |
A Python object. |
name |
The attribute name. |
This function enables callers to check which versions of Python will be discovered on a system as well as which one will be chosen for use with reticulate.
py_discover_config(required_module = NULL, use_environment = NULL)
py_discover_config(required_module = NULL, use_environment = NULL)
required_module |
A optional module name that will be used to select the Python environment used. |
use_environment |
An optional virtual/conda environment name to prefer in the search. |
The order of discovery is documented in vignette("versions")
, also available online
here
Python configuration object.
The builtin constant Ellipsis
py_ellipsis()
py_ellipsis()
Evaluate a single Python expression, in a way analogous to the Python
eval()
built-in function.
py_eval(code, convert = TRUE)
py_eval(code, convert = TRUE)
code |
A single Python expression. |
convert |
Boolean; automatically convert Python objects to R? |
The result produced by evaluating code
, converted to an R
object when convert
is set to TRUE
.
py_eval()
only supports evaluation of 'simple' Python expressions.
Other expressions (e.g. assignments) will fail; e.g.
> py_eval("x = 1") Error in py_eval_impl(code, convert) : SyntaxError: invalid syntax (reticulate_eval, line 1)
and this mirrors what one would see in a regular Python interpreter:
>>> eval("x = 1") Traceback (most recent call last): File "<stdin>", line 1, in <module> File "<string>", line 1 x = 1 ^ SyntaxError: invalid syntax
The py_run_string()
method can be used if the evaluation of arbitrary
Python code is required.
Get the path to the Python executable that reticulate
has been configured
to use. If Python has already been initialized, then reticulate
will
choose the currently-active copy of Python.
py_exe()
py_exe()
This can occasionally be useful if you'd like to interact with Python (or its
modules) via a subprocess; for example you might choose to install a package
with pip
:
system2(py_exe(), c("-m", "pip", "install", "numpy"))
and so you can also have greater control over how these modules are invoked.
The path to the Python executable reticulate
has been configured
to use.
This function could wrap an R function in a Python function with the same signature. Note that the signature of the R function must not contain esoteric Python-incompatible constructs.
py_func(f)
py_func(f)
f |
An R function |
A Python function that calls the R function f
with the same signature.
This function can be used to generate R wrapper for a specified
Python function while allowing to inject custom code for critical parts of
the wrapper generation, such as process the any part of the docs obtained
from py_function_docs()
and append additional roxygen fields. The result
from execution of python_function
is assigned to a variable called
python_function_result
that can also be processed by postprocess_fn
before writing the closing curly braces for the generated wrapper function.
py_function_custom_scaffold( python_function, r_function = NULL, additional_roxygen_fields = NULL, process_docs_fn = function(docs) docs, process_param_fn = function(param, docs) param, process_param_doc_fn = function(param_doc, docs) param_doc, postprocess_fn = function() { }, file_name = NULL )
py_function_custom_scaffold( python_function, r_function = NULL, additional_roxygen_fields = NULL, process_docs_fn = function(docs) docs, process_param_fn = function(param, docs) param, process_param_doc_fn = function(param_doc, docs) param_doc, postprocess_fn = function() { }, file_name = NULL )
python_function |
Fully qualified name of Python function or class
constructor (e.g. |
r_function |
Name of R function to generate (defaults to name of Python function if not specified) |
additional_roxygen_fields |
A list of additional roxygen fields to write
to the roxygen docs, e.g. |
process_docs_fn |
A function to process docs obtained from
|
process_param_fn |
A function to process each parameter needed for
|
process_param_doc_fn |
A function to process the roxygen docstring for each parameter. |
postprocess_fn |
A function to inject any custom code in the form of a string before writing the closing curly braces for the generated wrapper function. |
file_name |
The file name to write the generated wrapper function to. If
|
## Not run: library(tensorflow) library(stringr) # Example of a `process_param_fn` to cast parameters with default values # that contains "L" to integers process_int_param_fn <- function(param, docs) { # Extract the list of parameters that have integer values as default int_params <- gsub( " = [-]?[0-9]+L", "", str_extract_all(docs$signature, "[A-z]+ = [-]?[0-9]+L")[[1]]) # Explicitly cast parameter in the list obtained above to integer if (param %in% int_params) { param <- paste0("as.integer(", param, ")") } param } # Note that since the default value of parameter `k` is `1L`. It is wrapped # by `as.integer()` to ensure it's casted to integer before sending it to `tf$nn$top_k` # for execution. We then print out the python function result. py_function_custom_scaffold( "tf$nn$top_k", r_function = "top_k", process_param_fn = process_int_param_fn, postprocess_fn = function() { "print(python_function_result)" }) ## End(Not run)
## Not run: library(tensorflow) library(stringr) # Example of a `process_param_fn` to cast parameters with default values # that contains "L" to integers process_int_param_fn <- function(param, docs) { # Extract the list of parameters that have integer values as default int_params <- gsub( " = [-]?[0-9]+L", "", str_extract_all(docs$signature, "[A-z]+ = [-]?[0-9]+L")[[1]]) # Explicitly cast parameter in the list obtained above to integer if (param %in% int_params) { param <- paste0("as.integer(", param, ")") } param } # Note that since the default value of parameter `k` is `1L`. It is wrapped # by `as.integer()` to ensure it's casted to integer before sending it to `tf$nn$top_k` # for execution. We then print out the python function result. py_function_custom_scaffold( "tf$nn$top_k", r_function = "top_k", process_param_fn = process_int_param_fn, postprocess_fn = function() { "print(python_function_result)" }) ## End(Not run)
Get an attribute of a Python object
py_get_attr(x, name, silent = FALSE)
py_get_attr(x, name, silent = FALSE)
x |
Python object |
name |
Attribute name |
silent |
|
Attribute of Python object
Access an item from a Python object, similar to how x[key]
might be
used in Python code to access an item indexed by key
on an object x
. The
object's __getitem__()
__setitem__()
or __delitem__()
method will be
called.
py_get_item(x, key, silent = FALSE) py_set_item(x, key, value) py_del_item(x, key) ## S3 method for class 'python.builtin.object' x[...] ## S3 replacement method for class 'python.builtin.object' x[...] <- value
py_get_item(x, key, silent = FALSE) py_set_item(x, key, value) py_del_item(x, key) ## S3 method for class 'python.builtin.object' x[...] ## S3 replacement method for class 'python.builtin.object' x[...] <- value
x |
A Python object. |
key , ...
|
The key used for item lookup. |
silent |
Boolean; when |
value |
The item value to set. Assigning |
For py_get_item()
and [
, the return value from the
x.__getitem__()
method. For py_set_item()
, py_del_item()
and [<-
,
the mutate object x
is returned.
The py_get_item()
always returns an unconverted python object, while
[
will automatically attempt to convert the object if x
was created
with convert = TRUE
.
## Not run: ## get/set/del item from Python dict x <- r_to_py(list(abc = "xyz")) #' # R expression | Python expression # -------------------- | ----------------- x["abc"] # x["abc"] x["abc"] <- "123" # x["abc"] = "123" x["abc"] <- NULL # del x["abc"] x["abc"] <- py_none() # x["abc"] = None ## get item from Python list x <- r_to_py(list("a", "b", "c")) x[0] ## slice a NumPy array x <- np_array(array(1:64, c(4, 4, 4))) # R expression | Python expression # ------------ | ----------------- x[0] # x[0] x[, 0] # x[:, 0] x[, , 0] # x[:, :, 0] x[NA:2] # x[:2] x[`:2`] # x[:2] x[2:NA] # x[2:] x[`2:`] # x[2:] x[NA:NA:2] # x[::2] x[`::2`] # x[::2] x[1:3:2] # x[1:3:2] x[`1:3:2`] # x[1:3:2] ## End(Not run)
## Not run: ## get/set/del item from Python dict x <- r_to_py(list(abc = "xyz")) #' # R expression | Python expression # -------------------- | ----------------- x["abc"] # x["abc"] x["abc"] <- "123" # x["abc"] = "123" x["abc"] <- NULL # del x["abc"] x["abc"] <- py_none() # x["abc"] = None ## get item from Python list x <- r_to_py(list("a", "b", "c")) x[0] ## slice a NumPy array x <- np_array(array(1:64, c(4, 4, 4))) # R expression | Python expression # ------------ | ----------------- x[0] # x[0] x[, 0] # x[:, 0] x[, , 0] # x[:, :, 0] x[NA:2] # x[:2] x[`:2`] # x[:2] x[2:NA] # x[2:] x[`2:`] # x[2:] x[NA:NA:2] # x[::2] x[`::2`] # x[::2] x[1:3:2] # x[1:3:2] x[`1:3:2`] # x[1:3:2] ## End(Not run)
Check whether a Python object x
has an attribute
name
.
py_has_attr(x, name)
py_has_attr(x, name)
x |
A python object. |
name |
The attribute to be accessed. |
TRUE
if the object has the attribute name
, and
FALSE
otherwise.
Documentation for Python Objects
py_help(object)
py_help(object)
object |
Object to print documentation for |
Get a globally unique identifier for a Python object.
py_id(object)
py_id(object)
object |
Python object |
Unique identifer (as string) or NULL
In the current implementation of CPython this is the memory address of the object.
Install Python packages into a virtual environment or Conda environment.
py_install( packages, envname = NULL, method = c("auto", "virtualenv", "conda"), conda = "auto", python_version = NULL, pip = FALSE, ..., pip_ignore_installed = ignore_installed, ignore_installed = FALSE )
py_install( packages, envname = NULL, method = c("auto", "virtualenv", "conda"), conda = "auto", python_version = NULL, pip = FALSE, ..., pip_ignore_installed = ignore_installed, ignore_installed = FALSE )
packages |
A vector of Python packages to install. |
envname |
The name, or full path, of the environment in which Python
packages are to be installed. When |
method |
Installation method. By default, "auto" automatically finds a method that will work in the local environment. Change the default to force a specific installation method. Note that the "virtualenv" method is not available on Windows. |
conda |
The path to a |
python_version |
The requested Python version. Ignored when attempting to install with a Python virtual environment. |
pip |
Boolean; use |
... |
Additional arguments passed to |
pip_ignore_installed , ignore_installed
|
Boolean; whether pip should
ignore previously installed versions of the requested packages. Setting
this to |
On Linux and OS X the "virtualenv" method will be used by default ("conda" will be used if virtualenv isn't available). On Windows, the "conda" method is always used.
conda_install()
, for installing packages into conda environments.
virtualenv_install()
, for installing packages into virtual environments.
Check if a Python object is a null externalptr
py_is_null_xptr(x) py_validate_xptr(x)
py_is_null_xptr(x) py_validate_xptr(x)
x |
Python object |
When Python objects are serialized within a persisted R environment (e.g. .RData file) they are deserialized into null externalptr objects (since the Python session they were originally connected to no longer exists). This function allows you to safely check whether whether a Python object is a null externalptr.
The py_validate
function is a convenience function which calls
py_is_null_xptr
and throws an error in the case that the xptr
is NULL
.
Logical indicating whether the object is a null externalptr
Create a Python iterator from an R function
py_iterator(fn, completed = NULL, prefetch = 0L)
py_iterator(fn, completed = NULL, prefetch = 0L)
fn |
R function with no arguments. |
completed |
Special sentinel return value which indicates that
iteration is complete (defaults to |
prefetch |
Number items to prefetch. Set this to a positive integer to avoid a deadlock in situations where the generator values are consumed by python background threads while the main thread is blocked. |
Python generators are functions that implement the Python iterator
protocol. In Python, values are returned using the yield
keyword. In R,
values are simply returned from the function.
In Python, the yield
keyword enables successive iterations to use the state
of previous iterations. In R, this can be done by returning a function that
mutates its enclosing environment via the <<-
operator. For example:
sequence_generator <- function(start) { value <- start function() { value <<- value + 1 value } }
Then create an iterator using py_iterator()
:
g <- py_iterator(sequence_generator(10))
Python iterator which calls the R function for each iteration.
In Python, returning from a function without calling yield
indicates the
end of the iteration. In R however, return
is used to yield values, so
the end of iteration is indicated by a special return value (NULL
by
default, however this can be changed using the completed
parameter). For
example:
sequence_generator <-function(start) { value <- start function() { value <<- value + 1 if (value < 100) value else NULL } }
Some Python APIs use generators to parallellize operations by calling the
generator on a background thread and then consuming its results on
the foreground thread. The py_iterator()
function creates threadsafe
iterators by ensuring that the R function is always called on the main
thread (to be compatible with R's single-threaded runtime) even if the
generator is run on a background thread.
Get the length of a Python object. This is equivalent to calling
the Python builtin len()
function on the object.
py_len(x, default = NULL)
py_len(x, default = NULL)
x |
A Python object. |
default |
The default length value to return, in the case that
the associated Python object has no |
Not all Python objects have a defined length. For objects without a defined
length, calling py_len()
will throw an error. If you'd like to instead
infer a default length in such cases, you can set the default
argument
to e.g. 1L
, to treat Python objects without a __len__
method as having
length one.
The length of the object, as a numeric value.
List all attributes of a Python object
py_list_attributes(x)
py_list_attributes(x)
x |
Python object |
Character vector of attributes
List the Python packages that are installed in the requested Python environment.
py_list_packages( envname = NULL, type = c("auto", "virtualenv", "conda"), python = NULL )
py_list_packages( envname = NULL, type = c("auto", "virtualenv", "conda"), python = NULL )
envname |
The name of, or path to, a Python virtual environment.
Ignored when |
type |
The virtual environment type. Useful if you have both virtual environments and Conda environments of the same name on your system, and you need to disambiguate them. |
python |
The path to a Python executable. |
When envname
is NULL
, reticulate
will use the "default" version
of Python, as reported by py_exe()
. This implies that you
can call py_list_packages()
without arguments in order to list
the installed Python packages in the version of Python currently
used by reticulate
.
An R data.frame, with columns:
package
The package name.
version
The package version.
requirement
The package requirement.
channel
(Conda only) The channel associated with this package.
Note that this function will also attempt to initialize Python before checking if the requested module is available.
py_module_available(module)
py_module_available(module)
module |
The name of the module. |
TRUE
if the module is available and can be loaded;
FALSE
otherwise.
Get a reference to the Python None
object.
py_none()
py_none()
This is equivalent to calling str(object)
or repr(object)
in Python.
py_repr(object) py_str(object, ...)
py_repr(object) py_str(object, ...)
object |
Python object |
... |
Unused |
In Python, calling print()
invokes the builtin str()
, while auto-printing
an object at the REPL invokes the builtin repr()
.
In R, the default print method for python objects invokes py_repr()
, and
the default format()
and as.character()
methods invoke py_str()
.
For historical reasons, py_str()
is also an R S3 method that allows R
authors to customize the the string representation of a Python object from R.
New code is recommended to provide a format()
and/or print()
S3 R method
for python objects instead.
The default implementation will call PyObject_Str
on the object.
Character vector
as.character.python.builtin.str()
as.character.python.builtin.bytes()
for handling
Error : Embedded NUL in string.
if the Python string contains an embedded NUL
.
Execute code within the scope of the __main__
Python module.
py_run_string(code, local = FALSE, convert = TRUE) py_run_file(file, local = FALSE, convert = TRUE, prepend_path = TRUE)
py_run_string(code, local = FALSE, convert = TRUE) py_run_file(file, local = FALSE, convert = TRUE, prepend_path = TRUE)
code |
The Python code to be executed. |
local |
Boolean; should Python objects be created as part of
a local / private dictionary? If |
convert |
Boolean; should Python objects be automatically converted
to their R equivalent? If set to |
file |
The Python script to be executed. |
prepend_path |
Boolean; should the script directory be added to the
Python module search path? The default, |
A Python dictionary of objects. When local
is FALSE
, this
dictionary captures the state of the Python main module after running
the provided code. Otherwise, only the variables defined and used are
captured.
Save and load Python objects.
py_save_object(object, filename, pickle = "pickle", ...) py_load_object(filename, pickle = "pickle", ..., convert = TRUE)
py_save_object(object, filename, pickle = "pickle", ...) py_load_object(filename, pickle = "pickle", ..., convert = TRUE)
object |
A Python object. |
filename |
The output file name. Note that the file extension |
pickle |
The "pickle" implementation to use. Defaults to |
... |
Optional arguments, to be passed to the |
convert |
Bool. Whether the loaded pickle object should be converted to an R object. |
Python objects are serialized using the pickle
module – see
https://docs.python.org/3/library/pickle.html for more details.
Set an attribute of a Python object
py_set_attr(x, name, value)
py_set_attr(x, name, value)
x |
Python object |
name |
Attribute name |
value |
Attribute value |
Set various random seeds required to ensure reproducible results. The
provided seed
value will establish a new random seed for Python and NumPy,
and will also (by default) disable hash randomization.
py_set_seed(seed, disable_hash_randomization = TRUE)
py_set_seed(seed, disable_hash_randomization = TRUE)
seed |
A single value, interpreted as an integer |
disable_hash_randomization |
Disable hash randomization, which is another common source of variable results. See https://docs.python.org/3/using/cmdline.html#envvar-PYTHONHASHSEED |
This function does not set the R random seed, for that you
should call set.seed()
.
Suppress Python warnings for an expression
py_suppress_warnings(expr)
py_suppress_warnings(expr)
expr |
Expression to suppress warnings for |
Result of evaluating expression
Convert to Python Unicode Object
py_unicode(str)
py_unicode(str)
str |
Single element character vector to convert |
By default R character vectors are converted to Python strings. In Python 3 these values are unicode objects however in Python 2 they are 8-bit string objects. This function enables you to obtain a Python unicode object from an R character vector when running under Python 2 (under Python 3 a standard Python string object is returned).
Get the version of Python currently being used by reticulate
.
py_version()
py_version()
The version of Python currently used, or NULL
if Python has
not yet been initialized by reticulate
.
Create a python class
PyClass(classname, defs = list(), inherit = NULL)
PyClass(classname, defs = list(), inherit = NULL)
classname |
Name of the class. The class name is useful for S3 method dispatch. |
defs |
A named list of class definitions - functions, attributes, etc. |
inherit |
A list of Python class objects. Usually these objects have
the |
## Not run: Hi <- PyClass("Hi", list( name = NULL, `__init__` = function(self, name) { self$name <- name NULL }, say_hi = function(self) { paste0("Hi ", self$name) } )) a <- Hi("World") ## End(Not run)
## Not run: Hi <- PyClass("Hi", list( name = NULL, `__init__` = function(self, name) { self$name <- name NULL }, say_hi = function(self) { paste0("Hi ", self$name) } )) a <- Hi("World") ## End(Not run)
Convert between Python and R objects
r_to_py(x, convert = FALSE) py_to_r(x)
r_to_py(x, convert = FALSE) py_to_r(x)
x |
A Python object. |
convert |
Boolean; should Python objects be automatically converted
to their R equivalent? If set to |
An R object, as converted from the Python object.
This function provides a Python REPL in the R session, which can be used to interactively run Python code. All code executed within the REPL is run within the Python main module, and any generated Python objects will persist in the Python session after the REPL is detached.
repl_python( module = NULL, quiet = getOption("reticulate.repl.quiet", default = FALSE), input = NULL )
repl_python( module = NULL, quiet = getOption("reticulate.repl.quiet", default = FALSE), input = NULL )
module |
An (optional) Python module to be imported before the REPL is launched. |
quiet |
Boolean; print a startup banner when launching the REPL? If
|
input |
Python code to be run within the REPL. Setting this can be useful if you'd like to drive the Python REPL programmatically. |
When working with R and Python scripts interactively, one can activate
the Python REPL with repl_python()
, run Python code, and later run exit
to return to the R console.
A handful of magics are supported in repl_python()
:
Lines prefixed with !
are executed as system commands:
!cmd --arg1 --arg2
: Execute arbitrary system commands
Magics start with a %
prefix. Supported magics include:
%conda ...
executes a conda command in the active conda environment
%pip ...
executes pip for the active python.
%load
, %loadpy
, %run
executes a python file.
%system
, !!
executes a system command and capture output
%env
: read current environment variables.
%env name
: read environment variable 'name'.
%env name=val
, %env name val
: set environment variable 'name' to 'val'.
val
elements in {}
are interpolated using f-strings (required Python >= 3.6).
%cd <dir>
change working directory.
%cd -
: change to previous working directory (as set by %cd
).
%cd -3
: change to 3rd most recent working directory (as set by %cd
).
%cd -foo/bar
: change to most recent working directory matching "foo/bar"
regex
(in history of directories set via %cd
).
%pwd
: print current working directory.
%dhist
: print working directory history.
Additionally, the output of system commands can be captured in a variable, e.g.:
x = !ls
where x
will be a list of strings, consisting of
stdout output split in "\n"
(stderr is not captured).
# enter the Python REPL, create a dictionary, and exit repl_python() dictionary = {'alpha': 1, 'beta': 2} exit # access the created dictionary from R py$dictionary # $alpha # [1] 1 # # $beta # [1] 2
py, for accessing objects created using the Python REPL.
Evaluate a Python script within the Python main module, then make all public (non-module) objects within the main Python module available within the specified R environment.
source_python(file, envir = parent.frame(), convert = TRUE)
source_python(file, envir = parent.frame(), convert = TRUE)
file |
The Python script to be executed. |
envir |
The environment to assign Python objects into (for example,
|
convert |
Boolean; should Python objects be automatically converted
to their R equivalent? If set to |
To prevent assignment of objects into R, pass NULL
for the envir
parameter.
Create a Python tuple object
tuple(..., convert = FALSE)
tuple(..., convert = FALSE)
... |
Values for tuple (or a single list to be converted to a tuple). |
convert |
|
A Python tuple
The returned tuple will not automatically convert its elements from
Python to R. You can do manual conversion with the py_to_r()
function or
pass convert = TRUE
to request automatic conversion.
Select the version of Python to be used by reticulate
.
use_python(python, required = NULL) use_python_version(version, required = NULL) use_virtualenv(virtualenv = NULL, required = NULL) use_condaenv(condaenv = NULL, conda = "auto", required = NULL) use_miniconda(condaenv = NULL, required = NULL)
use_python(python, required = NULL) use_python_version(version, required = NULL) use_virtualenv(virtualenv = NULL, required = NULL) use_condaenv(condaenv = NULL, conda = "auto", required = NULL) use_miniconda(condaenv = NULL, required = NULL)
python |
The path to a Python binary. |
required |
Is the requested copy of Python required? If |
version |
The version of Python to use. |
virtualenv |
Either the name of, or the path to, a Python virtual environment. |
condaenv |
The conda environment to use. For |
conda |
The path to a |
The reticulate
package initializes its Python bindings lazily – that is,
it does not initialize its Python bindings until an API that explicitly
requires Python to be loaded is called. This allows users and package authors
to request particular versions of Python by calling use_python()
or one of
the other helper functions documented in this help file.
The RETICULATE_PYTHON
environment variable can also be used to control
which copy of Python reticulate
chooses to bind to. It should be set to
the path to a Python interpreter, and that interpreter can either be:
A standalone system interpreter,
Part of a virtual environment,
Part of a Conda environment.
When set, this will override any other requests to use a particular copy of
Python. Setting this in ~/.Renviron
(or optionally, a project .Renviron
)
can be a useful way of forcing reticulate
to use a particular version of
Python.
Note that the requests for a particular version of Python via use_python()
and friends only persist for the active session; they must be re-run in each
new R session as appropriate.
If use_python()
(or one of the other use_*()
functions) are called
multiple times, the most recently-requested version of Python will be
used. Note that any request to use_python()
will always be overridden
by the RETICULATE_PYTHON
environment variable, if set.
The py_config()
function will also provide a short note describing why
reticulate
chose to select the version of Python that was ultimately
activated.
R functions for managing Python virtual environments.
virtualenv_create( envname = NULL, python = virtualenv_starter(version), ..., version = NULL, packages = "numpy", requirements = NULL, force = FALSE, module = getOption("reticulate.virtualenv.module"), system_site_packages = getOption("reticulate.virtualenv.system_site_packages", default = FALSE), pip_version = getOption("reticulate.virtualenv.pip_version", default = NULL), setuptools_version = getOption("reticulate.virtualenv.setuptools_version", default = NULL), extra = getOption("reticulate.virtualenv.extra", default = NULL) ) virtualenv_install( envname = NULL, packages = NULL, ignore_installed = FALSE, pip_options = character(), requirements = NULL, ..., python_version = NULL ) virtualenv_remove(envname = NULL, packages = NULL, confirm = interactive()) virtualenv_list() virtualenv_root() virtualenv_python(envname = NULL) virtualenv_exists(envname = NULL) virtualenv_starter(version = NULL, all = FALSE)
virtualenv_create( envname = NULL, python = virtualenv_starter(version), ..., version = NULL, packages = "numpy", requirements = NULL, force = FALSE, module = getOption("reticulate.virtualenv.module"), system_site_packages = getOption("reticulate.virtualenv.system_site_packages", default = FALSE), pip_version = getOption("reticulate.virtualenv.pip_version", default = NULL), setuptools_version = getOption("reticulate.virtualenv.setuptools_version", default = NULL), extra = getOption("reticulate.virtualenv.extra", default = NULL) ) virtualenv_install( envname = NULL, packages = NULL, ignore_installed = FALSE, pip_options = character(), requirements = NULL, ..., python_version = NULL ) virtualenv_remove(envname = NULL, packages = NULL, confirm = interactive()) virtualenv_list() virtualenv_root() virtualenv_python(envname = NULL) virtualenv_exists(envname = NULL) virtualenv_starter(version = NULL, all = FALSE)
envname |
The name of, or path to, a Python virtual environment. If this
name contains any slashes, the name will be interpreted as a path; if the
name does not contain slashes, it will be treated as a virtual environment
within |
python |
The path to a Python interpreter, to be used with the created
virtual environment. This can also accept a version constraint like
|
... |
Optional arguments; currently ignored and reserved for future expansion. |
version , python_version
|
(string) The version of Python to use when
creating a virtual environment. Python installations will be searched for
using |
packages |
A set of Python packages to install (via |
requirements |
Filepath to a pip requirements file. |
force |
Boolean; force recreating the environment specified by
|
module |
The Python module to be used when creating the virtual
environment – typically, |
system_site_packages |
Boolean; create new virtual environments with the
|
pip_version |
The version of |
setuptools_version |
The version of |
extra |
An optional set of extra command line arguments to be passed.
Arguments should be quoted via |
ignore_installed |
Boolean; ignore previously-installed versions of the
requested packages? (This should normally be |
pip_options |
An optional character vector of additional command line
arguments to be passed to |
confirm |
Boolean; confirm before removing packages or virtual environments? |
all |
If |
Virtual environments are by default located at ~/.virtualenvs
(accessed
with the virtualenv_root()
function). You can change the default location
by defining the RETICULATE_VIRTUALENV_ROOT
or WORKON_HOME
environment variables.
Virtual environments are created from another "starter" or "seed" Python
already installed on the system. Suitable Pythons installed on the system are
found by virtualenv_starter()
.
The with
method for objects of type python.builtin.object
implements the context manager protocol used by the Python with
statement. The passed object must implement the
context
manager (__enter__
and __exit__
methods.
## S3 method for class 'python.builtin.object' with(data, expr, as = NULL, ...)
## S3 method for class 'python.builtin.object' with(data, expr, as = NULL, ...)
data |
Context to enter and exit |
expr |
Expression to evaluate within the context |
as |
Name of variable to assign context to for the duration of the expression's evaluation (optional). |
... |
Unused |